Postprocessing for stochastic parabolic partial differential equations

被引:28
|
作者
Lord, Gabriel J. [1 ]
Shardlow, Tony
机构
[1] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Heriot Watt Univ, Maxwell Inst Math Sci, Edinburgh EH14 4AS, Midlothian, Scotland
[3] Univ Manchester, Sch Math, Manchester M13 9PL, Lancs, England
关键词
stochastic exponential integrator; postprocessing; numerical solution of stochastic PDEs;
D O I
10.1137/050640138
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the strong approximation of stochastic parabolic partial differential equations with additive noise. We introduce postprocessing in the context of a standard Galerkin approximation, although other spatial discretizations are possible. In time, we follow [G. J. Lord and J. Rougemont, IMA J. Numer. Anal., 24 ( 2004), pp. 587-604] and use an exponential integrator. We prove strong error estimates and discuss the best number of postprocessing terms to take. Numerically, we evaluate the efficiency of the methods and observe rates of convergence. Some experiments with the implicit Euler-Maruyama method are described.
引用
收藏
页码:870 / 889
页数:20
相关论文
共 50 条
  • [1] Degenerate parabolic stochastic partial differential equations
    Hofmanova, Martina
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2013, 123 (12) : 4294 - 4336
  • [2] STOCHASTIC PARTIAL-DIFFERENTIAL EQUATIONS OF PARABOLIC TYPE
    PARDOUX, E
    ASTERISQUE, 1985, (132) : 71 - 87
  • [3] Intermittence and nonlinear parabolic stochastic partial differential equations
    Foondun, Mohammud
    Khoshnevisan, Davar
    ELECTRONIC JOURNAL OF PROBABILITY, 2009, 14 : 548 - 568
  • [4] On the discretization in time of parabolic stochastic partial differential equations
    Printems, J
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2001, 35 (06): : 1055 - 1078
  • [5] Covariance structure of parabolic stochastic partial differential equations
    Lang A.
    Larsson S.
    Schwab C.
    Stochastic Partial Differential Equations: Analysis and Computations, 2013, 1 (2) : :351 - 364
  • [6] Some Tools and Results for Parabolic Stochastic Partial Differential Equations
    Mueller, Carl
    MINICOURSE ON STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS, 2009, 1962 : 111 - 144
  • [7] Central limit theorems for parabolic stochastic partial differential equations
    Chen, Le
    Khoshnevisan, Davar
    Nualart, David
    Pu, Fei
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2022, 58 (02): : 1052 - 1077
  • [8] DEGENERATE PARABOLIC STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS: QUASILINEAR CASE
    Debussche, Arnaud
    Hofmanova, Martina
    Vovelle, Julien
    ANNALS OF PROBABILITY, 2016, 44 (03): : 1916 - 1955
  • [9] NONUNIQUENESS FOR NONNEGATIVE SOLUTIONS OF PARABOLIC STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS
    Burdzy, K.
    Mueller, C.
    Perkins, E. A.
    ILLINOIS JOURNAL OF MATHEMATICS, 2010, 54 (04) : 1481 - 1507
  • [10] Generalized solutions of linear parabolic stochastic partial differential equations
    Potthoff, J
    Vage, G
    Watanabe, H
    APPLIED MATHEMATICS AND OPTIMIZATION, 1998, 38 (01): : 95 - 107