Channel Estimation for Millimeter Wave Massive MIMO Systems Using Separable Compressive Sensing

被引:21
作者
Jiang, Ting [1 ]
Song, Maozhong [1 ]
Zhao, Xuejian [2 ]
Liu, Xu [3 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Elect & Informat Engn, Nanjing 210016, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Key Lab Broadband Wireless Commun & Sensor Networ, Minist Educ, Nanjing 210003, Peoples R China
[3] Nanjing Univ Posts & Telecommun, Key Lab Wireless Commun Jiangsu Prov, Nanjing 210003, Peoples R China
关键词
Channel estimation; Matching pursuit algorithms; Sparse matrices; Compressed sensing; Training; Frequency estimation; OFDM; separable compressive sensing; precoder design; millimeter wave; massive MIMO system; SPARSE; REPRESENTATIONS; RECOVERY; MODELS;
D O I
10.1109/ACCESS.2021.3069335
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Channel estimation is a fundamental problem for downlink transmission in millimeter wave (mmWave) multiple input multiple output (MIMO) systems. This paper proposes a channel estimation algorithm by exploiting the separable structured sparsity of mmWave massive MIMO channel. The mmWave downlink channel is firstly formulated as a two dimensional (2D) separable compressive sensing (CS) model according to the sparsity structure of the channel in angle of arrivals (AoAs) and angle of departures (AoDs) domains. Then a separable compressive sampling match pursuit (SCoSaMP) algorithm is proposed to solve the separable CS recovery problem for channel estimation. Based on the separable sparsity structure of the channel, we design the precoding and combining matrices under the metric of mutual information to further improve the performance of channel estimation. Simulations demonstrate the advantages of the proposed algorithm over the traditional CS-based channel estimation methods.
引用
收藏
页码:49738 / 49749
页数:12
相关论文
共 36 条
[1]   Channel Estimation and Hybrid Precoding for Millimeter Wave Cellular Systems [J].
Alkhateeb, Ahmed ;
El Ayach, Omar ;
Leus, Geert ;
Heath, Robert W., Jr. .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2014, 8 (05) :831-846
[2]   MASSIVE MIMO IN SUB-6 GHZ AND MMWAVE: PHYSICAL, PRACTICAL, AND USE-CASE DIFFERENCES [J].
Bjornson, Emil ;
Van der Perre, Liesbet ;
Buzzi, Stefano ;
Larsson, Erik G. .
IEEE WIRELESS COMMUNICATIONS, 2019, 26 (02) :100-108
[3]   Decoding by linear programming [J].
Candes, EJ ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (12) :4203-4215
[4]   The restricted isometry property and its implications for compressed sensing [J].
Candes, Emmanuel J. .
COMPTES RENDUS MATHEMATIQUE, 2008, 346 (9-10) :589-592
[5]   Stable signal recovery from incomplete and inaccurate measurements [J].
Candes, Emmanuel J. ;
Romberg, Justin K. ;
Tao, Terence .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (08) :1207-1223
[6]   Stable recovery of sparse overcomplete representations in the presence of noise [J].
Donoho, DL ;
Elad, M ;
Temlyakov, VN .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (01) :6-18
[7]   Learning to Sense Sparse Signals: Simultaneous Sensing Matrix and Sparsifying Dictionary Optimization [J].
Duarte-Carvajalino, Julio Martin ;
Sapiro, Guillermo .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2009, 18 (07) :1395-1408
[8]   Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems [J].
Figueiredo, Mario A. T. ;
Nowak, Robert D. ;
Wright, Stephen J. .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2007, 1 (04) :586-597
[9]   COMPRESSIVE SENSING TECHNIQUES FOR NEXT-GENERATION WIRELESS COMMUNICATIONS [J].
Gao, Zhen ;
Dai, Linglong ;
Han, Shuangfeng ;
I, Chih-Lin ;
Wang, Zhaocheng ;
Hanzo, Lajos .
IEEE WIRELESS COMMUNICATIONS, 2018, 25 (03) :144-153
[10]   Channel Estimation for Millimeter-Wave Massive MIMO With Hybrid Precoding Over Frequency-Selective Fading Channels [J].
Gao, Zhen ;
Hu, Chen ;
Dai, Linglong ;
Wang, Zhaocheng .
IEEE COMMUNICATIONS LETTERS, 2016, 20 (06) :1259-1262