Identifying Influential Nodes in Complex Networks Based on Local Effective Distance

被引:12
|
作者
Zhang, Junkai [1 ]
Wang, Bin [1 ]
Sheng, Jinfang [1 ]
Dai, Jinying [1 ]
Hu, Jie [1 ]
Chen, Long [1 ]
机构
[1] Cent South Univ, Sch Comp Sci & Engn, Changsha 410083, Hunan, Peoples R China
关键词
Influential nodes; complex networks; effective distance; total influence; CENTRALITY; SPREADERS; IDENTIFICATION;
D O I
10.3390/info10100311
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the rapid development of Internet technology, the social network has gradually become an indispensable platform for users to release information, obtain information, and share information. Users are not only receivers of information, but also publishers and disseminators of information. How to select a certain number of users to use their influence to achieve the maximum dissemination of information has become a hot topic at home and abroad. Rapid and accurate identification of influential nodes in the network is of great practical significance, such as the rapid dissemination, suppression of social network information, and the smooth operation of the network. Therefore, from the perspective of improving computational accuracy and efficiency, we propose an influential node identification method based on effective distance, named KDEC. By quantifying the effective distance between nodes and combining the position of the node in the network and its local structure, the influence of the node in the network is obtained, which is used as an indicator to evaluate the influence of the node. Through experimental analysis of a lot of real-world networks, the results show that the method can quickly and accurately identify the influential nodes in the network, and is better than some classical algorithms and some recently proposed algorithms.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] LCH: A local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks*
    Xu, Gui-Qiong
    Meng, Lei
    Tu, Deng-Qin
    Yang, Ping-Le
    CHINESE PHYSICS B, 2021, 30 (08)
  • [42] A neural diffusion model for identifying influential nodes in complex networks
    Ahmad, Waseem
    Wang, Bang
    CHAOS SOLITONS & FRACTALS, 2024, 189
  • [43] An improved gravity model for identifying influential nodes in complex networks considering asymmetric attraction effect
    Meng, Lei
    Xu, Guiqiong
    Dong, Chen
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2025, 657
  • [44] Identifying influential nodes for the networks with community structure
    Zhao, Zi-Juan
    Guo, Qiang
    Yu, Kai
    Liu, Jian-Guo
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 551
  • [45] A novel potential edge weight method for identifying influential nodes in complex networks based on neighborhood and position
    Meng, Lei
    Xu, Guiqiong
    Yang, Pingle
    Tu, Dengqin
    JOURNAL OF COMPUTATIONAL SCIENCE, 2022, 60
  • [46] Identifying influential nodes based on graph signal processing in complex networks
    Jia, Zhao
    Li, Yu
    Li Jing-Ru
    Peng, Zhou
    CHINESE PHYSICS B, 2015, 24 (05)
  • [47] Evidential method to identify influential nodes in complex networks
    Mo, Hongming
    Gao, Cai
    Deng, Yong
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2015, 26 (02) : 381 - 387
  • [48] Identifying Influential Nodes in Complex Networks Based on Multi-Information Fused Degree of Grey Incidence
    Zhang, Jinhua
    Zhang, Qishan
    Wu, Ling
    Weng, Lijuan
    Yuan, Xiaojian
    Zhang, Jinxin
    JOURNAL OF GREY SYSTEM, 2023, 35 (02)
  • [49] Isolating Coefficient-Based Framework to Recognize Influential Nodes in Complex Networks
    Mohammad, Buran Basha
    Dhuli, V. Sateeshkrishna
    Enduri, Murali Krishna
    Cenkeramaddi, Linga Reddy
    IEEE ACCESS, 2024, 12 : 183875 - 183900
  • [50] Identifying critical nodes in complex networks based on neighborhood information
    Zhao, Na
    Wang, Hao
    Wen, Jun-jie
    Li, Jie
    Jing, Ming
    Wang, Jian
    NEW JOURNAL OF PHYSICS, 2023, 25 (08):