Identifying Influential Nodes in Complex Networks Based on Local Effective Distance

被引:12
|
作者
Zhang, Junkai [1 ]
Wang, Bin [1 ]
Sheng, Jinfang [1 ]
Dai, Jinying [1 ]
Hu, Jie [1 ]
Chen, Long [1 ]
机构
[1] Cent South Univ, Sch Comp Sci & Engn, Changsha 410083, Hunan, Peoples R China
关键词
Influential nodes; complex networks; effective distance; total influence; CENTRALITY; SPREADERS; IDENTIFICATION;
D O I
10.3390/info10100311
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the rapid development of Internet technology, the social network has gradually become an indispensable platform for users to release information, obtain information, and share information. Users are not only receivers of information, but also publishers and disseminators of information. How to select a certain number of users to use their influence to achieve the maximum dissemination of information has become a hot topic at home and abroad. Rapid and accurate identification of influential nodes in the network is of great practical significance, such as the rapid dissemination, suppression of social network information, and the smooth operation of the network. Therefore, from the perspective of improving computational accuracy and efficiency, we propose an influential node identification method based on effective distance, named KDEC. By quantifying the effective distance between nodes and combining the position of the node in the network and its local structure, the influence of the node in the network is obtained, which is used as an indicator to evaluate the influence of the node. Through experimental analysis of a lot of real-world networks, the results show that the method can quickly and accurately identify the influential nodes in the network, and is better than some classical algorithms and some recently proposed algorithms.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Identifying influential nodes in complex networks from global perspective
    Zhao, Jie
    Wang, Yunchuan
    Deng, Yong
    CHAOS SOLITONS & FRACTALS, 2020, 133
  • [32] Identifying influential nodes based on network representation learning in complex networks
    Wei, Hao
    Pan, Zhisong
    Hu, Guyu
    Zhang, Liangliang
    Yang, Haimin
    Li, Xin
    Zhou, Xingyu
    PLOS ONE, 2018, 13 (07):
  • [33] A new method of identifying influential nodes in complex networks based on TOPSIS
    Du, Yuxian
    Gao, Cai
    Hu, Yong
    Mahadevan, Sankaran
    Deng, Yong
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 399 : 57 - 69
  • [34] BGN: Identifying Influential Nodes in Complex Networks via Backward Generating Networks
    Lin, Zhiwei
    Ye, Fanghua
    Chen, Chuan
    Zheng, Zibin
    IEEE ACCESS, 2018, 6 : 59949 - 59962
  • [35] Identifying influential nodes in complex networks with community structure
    Zhang, Xiaohang
    Zhu, Ji
    Wang, Qi
    Zhao, Han
    KNOWLEDGE-BASED SYSTEMS, 2013, 42 : 74 - 84
  • [36] A Re-Ranking Algorithm for Identifying Influential Nodes in Complex Networks
    Yu, Enyu
    Fu, Yan
    Tang, Qing
    Zhao, Jun-Yan
    Chen, Duan-Bing
    IEEE ACCESS, 2020, 8 : 211281 - 211290
  • [37] A dynamic weighted TOPSIS method for identifying influential nodes in complex networks
    Yang, Pingle
    Liu, Xin
    Xu, Guiqiong
    MODERN PHYSICS LETTERS B, 2018, 32 (19):
  • [38] Identifying and Ranking Influential Nodes in Complex Networks Based on Dynamic Node Strength
    Li, Xu
    Sun, Qiming
    ALGORITHMS, 2021, 14 (03)
  • [39] A novel method for identifying influential nodes in complex networks based on gravity model
    Jiang, Yuan
    Yang, Song-Qing
    Yan, Yu-Wei
    Tong, Tian-Chi
    Dai, Ji-Yang
    CHINESE PHYSICS B, 2022, 31 (05)
  • [40] Identifying multiple influential nodes based on region density curve in complex networks
    Kang Ling
    Xiang Bing-Bing
    Zhai Su-Lan
    Bao Zhong-Kui
    Zhang Hai-Feng
    ACTA PHYSICA SINICA, 2018, 67 (19)