Three distinct Arabidopsis hemoglobins exhibit peroxidase-like activity and differentially mediate nitrite-dependent protein nitration

被引:69
作者
Sakamoto, A
Sakurao, S
Fukunaga, K
Matsubara, T
Ueda-Hashimoto, M
Tsukamoto, S
Takahashi, M
Morikawa, H
机构
[1] Hiroshima Univ, Grad Sch Sci, Dept Math & Life Sci, Higashihiroshima 7398526, Japan
[2] Hiroshima Univ, Fac Sci, Dept Biol Sci, Higashihiroshima 7398526, Japan
[3] Project Japan Sci & Technol Agcy, Core Res Evolut Sci & Technol, Kawaguchi 3320012, Japan
基金
日本学术振兴会;
关键词
non-symbiotic hemoglobin; nitrite; nitrogen dioxide; protein tyrosine nitration; reactive nitrogen species; peroxidase;
D O I
10.1016/j.febslet.2004.07.005
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
All plants examined to date possess non-symbiotic hemoglobin whose physiological role remains unclear. The present study explored the catalytic function of three representative classes of the plant hemoglobin from Arabidopsis thaliana: AtGLB1, AtGLB2, and AtGLB3. Purified recombinant proteins of these hemoglobins displayed hydrogen peroxide-dependent oxidation of several peroxidase substrates that was sensitive to cyanide, revealing intrinsic peroxidase-like activity. In the presence of nitrite and hydrogen peroxide, AtGLB1 was the most efficient at mediating tyrosine nitration of its own and other proteins via the formation of reactive nitrogen species as a result of nitrite oxidation. AtGLB1 mRNA significantly accumulated in Arabidopsis seedlings exposed to nitrite, supporting the physiological relevance of its function to nitrite and nitrite-derived reactive nitrogen species. (C) 2004 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:27 / 32
页数:6
相关论文
共 31 条
[1]   Plant hemoglobins [J].
Arredondo-Peter, R ;
Hargrove, MS ;
Moran, JF ;
Sarath, G ;
Klucas, RV .
PLANT PHYSIOLOGY, 1998, 118 (04) :1121-1125
[2]   FUNCTIONING HEMOGLOBIN GENES IN NON-NODULATING PLANTS [J].
BOGUSZ, D ;
APPLEBY, CA ;
LANDSMANN, J ;
DENNIS, ES ;
TRINICK, MJ ;
PEACOCK, WJ .
NATURE, 1988, 331 (6152) :178-180
[3]  
Bonner F.T., 1996, METHODS NITRIC OXIDE, P3
[4]   Expression of a stress-induced hemoglobin affects NO levels produced by alfalfa root cultures under hypoxic stress [J].
Dordas, C ;
Hasinoff, BB ;
Igamberdiev, AU ;
Manac'h, N ;
Rivoal, J ;
Hill, RD .
PLANT JOURNAL, 2003, 35 (06) :763-770
[5]   Plant haemoglobins, nitric oxide and hypoxic stress [J].
Dordas, C ;
Rivoal, J ;
Hill, RD .
ANNALS OF BOTANY, 2003, 91 (02) :173-178
[6]  
Doyle M P, 1985, J Free Radic Biol Med, V1, P145, DOI 10.1016/0748-5514(85)90019-4
[7]   The toxicities of native and modified hemoglobins [J].
Everse, J ;
Hsia, N .
FREE RADICAL BIOLOGY AND MEDICINE, 1997, 22 (06) :1075-1099
[8]   The monosaccharide transporter gene, AtSTP4, and the cell-wall invertase, Atβfruct1, are induced in Arabidopsis during infection with the fungal biotroph Erysiphe cichoracearum [J].
Fotopoulos, V ;
Gilbert, MJ ;
Pittman, JK ;
Marvier, AC ;
Buchanan, AJ ;
Sauer, N ;
Hall, JL ;
Williams, LE .
PLANT PHYSIOLOGY, 2003, 132 (02) :821-829
[9]   Hemoglobin can nitrate itself and other proteins [J].
Grzelak, A ;
Balcerczyk, A ;
Mateja, A ;
Bartosz, G .
BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 2001, 1528 (2-3) :97-100
[10]  
Hardison R, 1998, J EXP BIOL, V201, P1099