Three-dimensional porous carbon frameworks derived from mangosteen peel waste as promising materials for CO2 capture and supercapacitors

被引:74
作者
Li, Yao [1 ,2 ]
Wang, Xin [1 ]
Cao, Minhua [1 ]
机构
[1] Beijing Inst Technol, Key Lab Cluster Sci, Minist Educ China,Sch Chem & Chem Engn, Beijing Key Lab Photoelect Electrophoton Convers, Beijing 100081, Peoples R China
[2] Henan Polytech Univ, Sch Safety Sci & Engn, Jiaozuo 454000, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Mangosteen peel; Three dimensional; Interconnected porous structure; CO2; capture; Supercapacitors; HIGH-PERFORMANCE SUPERCAPACITOR; ACTIVATED CARBON; HIGH-CAPACITY; SURFACE-AREA; MICROPOROUS CARBONS; NANOPOROUS CARBONS; ORGANIC FRAMEWORKS; H-2; STORAGE; GAS UPTAKE; NITROGEN;
D O I
10.1016/j.jcou.2018.07.019
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Business costs, environmental and energy concerns have increased interest in biomass materials for the production of porous carbon materials, especially as solid-state adsorbents for CO2 capture or as electrode materials for supercapacitors. We put forward an efficient and scalable approach to convert mangosteen peel (MP) waste into three-dimensional microporous carbon frameworks (3D-MP-CFW) for effective CO2 capture and supercapacitors. The MP waste is first subjected to a controllable hydrothermal treatment in alkaline solution and then a carbonization process. The resultant optimal carbon sample possesses a high surface area up to 1270 m(2)g(-1) and abundant micropores with fine micropore sizes below 1 nm. The typical sample has a well-tailored open 3D macroporous interconnected network structure, exhibiting an outstanding CO2 capture recyclability and high CO2 capture capacities of 6.93 and 4.77 mmol g(-1) at 0 degrees C and 25 degrees C (1 bar), respectively. Simultaneously, benefiting from its high surface area and 3D interconnected porous structure, this optimal sample also exhibits a good supercapacitance performance with the specific capacitance of 240 F g(-1) (in 6 M KOH, at 1 A g(-1)) in a three-electrode system. Our simple preparation method presents an efficient way to make promising carbon materials for high-performance CO2 capture and supercapacitors.
引用
收藏
页码:204 / 216
页数:13
相关论文
共 50 条
  • [31] Polyacrylonitrile-derived nitrogen enriched porous carbon fiber with high CO2 capture performance
    Ma, Changdan
    Bai, Jiali
    Demir, Muslum
    Yu, Qiyun
    Hu, Xin
    Jiang, Wenhao
    Wang, Linlin
    SEPARATION AND PURIFICATION TECHNOLOGY, 2022, 303
  • [32] Microporous carbon nanoflakes derived from biomass cork waste for CO2 capture
    Zhang, Xuefeng
    Elsayed, Islam
    Song, Xiaozhou
    Shmulsky, Rubin
    Hassan, El Barbary
    SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 748 (748)
  • [33] Cauliflower-derived porous carbon without activation for electrochemical capacitor and CO2 capture applications
    Du, Juan
    Yu, Yifeng
    Lv, Haijun
    Chen, Chunlin
    Zhang, Jian
    Chen, Aibing
    JOURNAL OF NANOPARTICLE RESEARCH, 2018, 20 (01)
  • [34] Activated Porous Carbon with an Ultrahigh Surface Area Derived from Waste Biomass for Acetone Adsorption, CO2 Capture, and Light Hydrocarbon Separation
    Ma, Xiancheng
    Chen, Ruofei
    Zhou, Ke
    Wu, Qingding
    Li, Hailong
    Zeng, Zheng
    Li, Liqing
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (31): : 11721 - 11728
  • [35] N/O co-doped litchi peel derived porous carbon materials for supercapacitors
    Wang, Yuanyuan
    Dong, Xingshen
    Xia, Yingjing
    Wang, Wenyi
    Wang, Xueqin
    Liu, Yanxiu
    Qiao, Peng
    Zhang, Geng
    Liu, Shetian
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2025, 198
  • [36] N-doped porous carbon derived from macadamia nut shell for CO2 adsorption
    Bai, Jiali
    Huang, Jiamei
    Yu, Qiyun
    Demir, Muslum
    Kilic, Murat
    Altay, Bilge Nazli
    Hu, Xin
    Wang, Linlin
    FUEL PROCESSING TECHNOLOGY, 2023, 249
  • [37] From Fundamentals to Synthesis: Covalent Organic Frameworks as Promising Materials for CO2 Adsorption
    Aslam, Awais Ali
    Amjad, Sania
    Irshad, Adnan
    Kokab, Osama
    Ullah, Mudassar Sana
    Farid, Awais
    Mehmood, Rana Adeel
    Hassan, Sadaf Ul
    Nazir, Muhammad Shahid
    Ahmed, Mahmood
    TOPICS IN CURRENT CHEMISTRY, 2025, 383 (01)
  • [38] Synthesis of porous and activated carbon from lemon peel waste for CO2 adsorption
    Weldekidan, Haftom
    Patel, Himanshu
    Mohanty, Amar
    Misra, Manjusri
    CARBON CAPTURE SCIENCE & TECHNOLOGY, 2024, 10
  • [39] Enhanced CO2 Adsorption Capacity in Highly Porous Carbon Materials Derived from Melamine-Formaldehyde Resin
    Tian, Lifeng
    Zhi, Yue
    Yu, Qiyun
    Xu, Qianyu
    Demir, Muslum
    Colak, Suleyman Gokhan
    Farghaly, Ahmed A.
    Wang, Linlin
    Hu, Xin
    ENERGY & FUELS, 2024, 38 (14) : 13186 - 13195
  • [40] Design of hierarchical porous carbon with three-dimensional network through solvent-free nanocasting method for CO2 capture
    Jin, Xiaoqi
    Ge, Jinlong
    Zhu, Linlin
    Xiong, Mingwen
    Wu, Zhong
    Zhang, Liyuan
    FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2022, 30 (08) : 839 - 847