Three-dimensional porous carbon frameworks derived from mangosteen peel waste as promising materials for CO2 capture and supercapacitors

被引:74
|
作者
Li, Yao [1 ,2 ]
Wang, Xin [1 ]
Cao, Minhua [1 ]
机构
[1] Beijing Inst Technol, Key Lab Cluster Sci, Minist Educ China,Sch Chem & Chem Engn, Beijing Key Lab Photoelect Electrophoton Convers, Beijing 100081, Peoples R China
[2] Henan Polytech Univ, Sch Safety Sci & Engn, Jiaozuo 454000, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Mangosteen peel; Three dimensional; Interconnected porous structure; CO2; capture; Supercapacitors; HIGH-PERFORMANCE SUPERCAPACITOR; ACTIVATED CARBON; HIGH-CAPACITY; SURFACE-AREA; MICROPOROUS CARBONS; NANOPOROUS CARBONS; ORGANIC FRAMEWORKS; H-2; STORAGE; GAS UPTAKE; NITROGEN;
D O I
10.1016/j.jcou.2018.07.019
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Business costs, environmental and energy concerns have increased interest in biomass materials for the production of porous carbon materials, especially as solid-state adsorbents for CO2 capture or as electrode materials for supercapacitors. We put forward an efficient and scalable approach to convert mangosteen peel (MP) waste into three-dimensional microporous carbon frameworks (3D-MP-CFW) for effective CO2 capture and supercapacitors. The MP waste is first subjected to a controllable hydrothermal treatment in alkaline solution and then a carbonization process. The resultant optimal carbon sample possesses a high surface area up to 1270 m(2)g(-1) and abundant micropores with fine micropore sizes below 1 nm. The typical sample has a well-tailored open 3D macroporous interconnected network structure, exhibiting an outstanding CO2 capture recyclability and high CO2 capture capacities of 6.93 and 4.77 mmol g(-1) at 0 degrees C and 25 degrees C (1 bar), respectively. Simultaneously, benefiting from its high surface area and 3D interconnected porous structure, this optimal sample also exhibits a good supercapacitance performance with the specific capacitance of 240 F g(-1) (in 6 M KOH, at 1 A g(-1)) in a three-electrode system. Our simple preparation method presents an efficient way to make promising carbon materials for high-performance CO2 capture and supercapacitors.
引用
收藏
页码:204 / 216
页数:13
相关论文
共 50 条
  • [1] In-situ activated ultramicroporous carbon materials derived from waste biomass for CO2 capture and benzene adsorption
    Ma, Xiancheng
    Wu, Yi
    Fang, Muaoer
    Liu, Baogen
    Chen, Ruofei
    Shi, Rui
    Wu, Qingding
    Zeng, Zheng
    Li, Liqing
    BIOMASS & BIOENERGY, 2022, 158
  • [2] Activated porous carbon derived from sawdust for CO2 capture
    Foorginezhad, S.
    Zerafat, M. M.
    Asadnia, M.
    Rezvannasab, Gh
    MATERIALS CHEMISTRY AND PHYSICS, 2024, 317
  • [3] Sustainable Porous Carbon Materials Derived from Wood-Based Biopolymers for CO2 Capture
    Xu, Chao
    Stromme, Maria
    NANOMATERIALS, 2019, 9 (01)
  • [4] CO2 adsorption on activated carbon prepared from mangosteen peel
    Giraldo, Liliana
    Carlos Moreno-Pirajan, Juan
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2018, 133 (01) : 337 - 354
  • [5] A Molecular Foaming and Activation Strategy to Porous N-Doped Carbon Foams for Supercapacitors and CO2 Capture
    Zhou, Mengyuan
    Lin, Yaqian
    Xia, Huayao
    Wei, Xiangru
    Yao, Yan
    Wang, Xiaoning
    Wu, Zhangxiong
    NANO-MICRO LETTERS, 2020, 12 (01)
  • [6] Facile synthesis of porous carbon nitride spheres with hierarchical three-dimensional mesostructures for CO2 capture
    Li, Qiang
    Yang, Jianping
    Feng, Dan
    Wu, Zhangxiong
    Wu, Qingling
    Park, Sung Soo
    Ha, Chang-Sik
    Zhao, Dongyuan
    NANO RESEARCH, 2010, 3 (09) : 632 - 642
  • [7] Design of hierarchically porous carbon frameworks for enhanced CO2 capture performance
    Zhao, Xinfu
    Nie, Yihao
    Yi, Xibin
    Yu, Shimo
    Zhang, Jing
    Liu, Xiaochan
    Liu, Sijia
    Yuan, Zhipeng
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2023, 11 (02):
  • [8] Controllable construction of boron and nitrogen co-doping honeycomb porous carbon as promising materials for CO2 capture and supercapacitors
    Zhang, Chenchen
    Huang, Mengyuan
    Zhong, Shun
    Qi, Jiqiu
    Sui, Yanwei
    Meng, Qingkun
    Wei, Fuxiang
    Zhu, Lei
    Ren, Yaojian
    Wei, Wenqing
    JOURNAL OF ENERGY STORAGE, 2022, 55
  • [9] Porous carbon frameworks with high CO2 capture capacity derived from hierarchical polyimide/zeolitic imidazolate frameworks composite aerogels
    Wu, Tingting
    Dong, Jie
    De France, Kevin
    Zhang, Peiyan
    Zhao, Xin
    Zhang, Qinghua
    CHEMICAL ENGINEERING JOURNAL, 2020, 395 (395)
  • [10] Three-Dimensional Graphene-Based Porous Adsorbents for Postcombustion CO2 Capture
    Chowdhury, Shamik
    Balasubramanian, Rajasekhar
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2016, 55 (29) : 7906 - 7916