Toward an automated tool for dislocation density characterization in a scanning electron microscope

被引:5
|
作者
Cazottes, S. [1 ]
Bechis, A. [1 ]
Lafond, C. [1 ]
L'Hote, G. [1 ]
Roth, C. [2 ]
Dreyfus, T. [2 ]
Steyer, P. [1 ]
Douillard, T. [1 ]
Langlois, C. [1 ]
机构
[1] Univ Lyon, CNRS, UMR5510, INSA Lyon,MATEIS, F-69621 Villeurbanne, France
[2] RedantLabs, 19 Rue Pere Chevrier, F-69007 Lyon, France
关键词
Electron channeling contrast imaging; Dislocations; Scanning electron microscopy; Data clustering; CHANNELING CONTRAST ANALYSIS; EVOLUTION; MICROSTRUCTURE; IMAGES; COPPER; STEEL; EBSD; ION;
D O I
10.1016/j.matchar.2019.109954
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We propose a methodology for quantitative dislocation characterization of a bulk sample in a scanning electron microscope without requiring pre-orientation of the sample before analysis. In this method, a series of back-scattered electron images are acquired while rotating the sample, and an intensity profile as a function of the rotation angle is obtained for each pixel of the observed area. These intensity profiles are used to determine the orientation condition of the analyzed grain. The nature of the pixel is defined as what dominates the pixel intensity (matrix, defect or noise). As the intensity profiles are also characteristic of the pixel nature, a data clustering algorithm is applied to the intensity profiles to classify the pixel nature. As a result, the defect density, such as the dislocation density, can be automatically measured. The proposed method is fast and efficient compared with transmission electron microscopy analysis and could enable the future characterization of multiple grains in a deformed sample within a reasonable amount of time.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Scanning electron microscope studies of cycad tracheids
    Schneider, E. L.
    Carlquist, S.
    Chemnick, J. G.
    SOUTH AFRICAN JOURNAL OF BOTANY, 2007, 73 (04) : 512 - 517
  • [32] Developments in the design of a spectroscopic scanning electron microscope
    Khursheed, A
    Osterberg, M
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2006, 556 (02) : 437 - 444
  • [33] Hot electron cascades in the scanning tunneling microscope
    Schneider, Natalia L.
    Johansson, Peter
    Berndt, Richard
    PHYSICAL REVIEW B, 2013, 87 (04):
  • [34] A scanning electron microscope examination of Pomphorhynchus laevis
    Yildiz, K
    Cavusoglu, K
    TURKISH JOURNAL OF VETERINARY & ANIMAL SCIENCES, 2003, 27 (06) : 1357 - 1360
  • [35] Scanning electron microscope design for quantitative multicontrast
    Khursheed, A
    SCANNING, 1996, 18 (02) : 81 - 91
  • [36] Low-cost electron detector for scanning electron microscope
    Vlasov, Evgenii
    Denisov, Nikita
    Verbeeck, Johan
    HARDWAREX, 2023, 14
  • [37] Scanning electron microscope imaging of amyloid fibrils
    Shiraki, K., 1600, Science Publications (10): : 31 - 39
  • [38] Evaluation of chamber contamination in a scanning electron microscope
    Roediger, P.
    Wanzenboeck, H. D.
    Hochleitner, G.
    Bertagnolli, E.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2009, 27 (06): : 2711 - 2717
  • [39] Simulation of electron scattering in a scanning electron microscope for subsurface metrology
    Okai, Nobuhiro
    Sohda, Yasunari
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2012, 30 (06):
  • [40] Integration of a high-NA light microscope in a scanning electron microscope
    Zonnevylle, A. C.
    Van Tol, R. F. C.
    Liv, N.
    Narvaez, A. C.
    Effting, A. P. J.
    Kruit, P.
    Hoogenboom, J. P.
    JOURNAL OF MICROSCOPY, 2013, 252 (01) : 58 - 70