All finite sets are Ramsey in the maximum norm

被引:8
作者
Kupavskii, Andrey [1 ,2 ,3 ]
Sagdeev, Arsenii [4 ]
机构
[1] MIPT, Moscow, Russia
[2] IAS, Princeton, NJ USA
[3] CNRS, Grenoble, France
[4] MIPT, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
CHROMATIC-NUMBERS; SPACES; BOUNDS;
D O I
10.1017/fms.2021.50
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For two metric spaces X and Y the chromatic number x(X; Y) of X with forbidden Y is the smallest k such that there is a colouring of the points of X with k colors that contains no monochromatic copy of Y. In this article, we show that for each finite metric space M that contains at least two points the value chi (R-infinity(n); M) grows exponentially with n. We also provide explicit lower and upper bounds for some special M.
引用
收藏
页数:12
相关论文
共 33 条
[1]  
[Anonymous], 2013, Thirty Essays on Geometric Graph Theory, DOI [10.1007/978-1-4614-0110-0_23, DOI 10.1007/978-1-4614-0110-0_23]
[2]   A Remark on Lower Bounds for the Chromatic Numbers of Spaces of Small Dimension with Metrics l1 and l2 [J].
Bogolyubsky, L. I. ;
Raigorodskii, A. M. .
MATHEMATICAL NOTES, 2019, 105 (1-2) :180-203
[3]   All regular polytopes are Ramsey [J].
Cantwell, Kristal .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2007, 114 (03) :555-562
[4]   On the chromatic numbers of small-dimensional Euclidean spaces [J].
Cherkashin, Danila ;
Kulikov, Anatoly ;
Raigorodskii, Andrei .
DISCRETE APPLIED MATHEMATICS, 2018, 243 :125-131
[5]  
de Grey A., 2018, GEOMBINATORICS, V28, P18
[6]  
Erdos P., 1973, J COMBIN THEORY A J COMBIN THEORY A, V14, P341
[7]  
Erdos P., 1975, Colloq. Math. Soc. Janos Bolyai, V10, P529
[8]  
Erdos P., 1973, INFIN FINITE SETS, V10, P559
[9]  
Erdos P., 1962, Acta Arith, V7, P281, DOI [10.4064/aa-7-3-281-285, DOI 10.4064/AA-7-3-281-285]
[10]   The Chromatic Number of the Plane is At Least 5: A New Proof [J].
Exoo, Geoffrey ;
Ismailescu, Dan .
DISCRETE & COMPUTATIONAL GEOMETRY, 2020, 64 (01) :216-226