Convergence rate of the kernel regression estimator for associated and truncated data

被引:1
作者
Guessoum, Z. [1 ]
Hamrani, F. [2 ]
机构
[1] USTHB, Fac Math, Lab MSTD, BP 32, Algiers 16111, Algeria
[2] USTHB, Fac Math, Algiers, Algeria
关键词
Association; kernel estimator; nonparametric regression; random left-truncation (RLT) model; rate of convergence; strong consistency; PRODUCT-LIMIT ESTIMATOR; LYNDEN-BELL ESTIMATOR; ASYMPTOTIC PROPERTIES; DENSITY-ESTIMATION; RANDOM-VARIABLES; PROBABILITY; NORMALITY;
D O I
10.1080/10485252.2017.1303059
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper studies the behaviour of the kernel estimator of the regression function for associated data in the random left truncated model. The uniform strong consistency rate over a real compact set of the estimate is established. The finite sample performance of the estimator is investigated through extensive simulation studies.
引用
收藏
页码:425 / 446
页数:22
相关论文
共 34 条