A general-purpose baseline estimation algorithm for spectroscopic data

被引:18
作者
Barkauskas, Donald A. [1 ]
Rocke, David M. [2 ]
机构
[1] Childrens Oncol Grp, Arcadia, CA 91006 USA
[2] Univ Calif Davis, Sch Med, Div Biostat, Davis, CA 95616 USA
关键词
Baseline estimation; Fourier transform ion cyclotron resonance; Matrix-assisted laser desorption/ionization; Spectroscopy; MASS-SPECTROMETRY DATA; IMPROVED PEAK DETECTION;
D O I
10.1016/j.aca.2009.10.043
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A common feature of many modern technologies used in proteomics - including nuclear magnetic resonance imaging and mass spectrometry - is the generation of large amounts of data for each subject in an experiment. Extracting the signal from the background noise, however, poses significant challenges. One important part of signal extraction is the correct identification of the baseline level of the data. In this article, we propose a new algorithm (the "BXR algorithm") for baseline estimation that can be directly applied to different types of spectroscopic data, but also can be specifically tailored to different technologies. We then show how to adapt the algorithm to a particular technology - matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry - which is rapidly gaining popularity as an analytic tool in proteomics. Finally, we compare the performance of our algorithm to that of existing algorithms for baseline estimation. The BXR algorithm is computationally efficient, robust to the type of one-sided signal that occurs in many modern applications (including NMR and mass spectrometry), and improves on existing baseline estimation algorithms. It is implemented as the function baseline in the R package FTICRMS, available either from the Comprehensive R Archive Network (http://www.r-project.org/) or from the first author. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:191 / 197
页数:7
相关论文
共 16 条
[1]   Analysis of MALDI FT-ICR mass spectrometry data: A time series approach [J].
Barkauskas, Donald A. ;
Kronewitter, Scott R. ;
Lebrilla, Carlito B. ;
Rocke, David M. .
ANALYTICA CHIMICA ACTA, 2009, 648 (02) :207-214
[2]   Detecting glycan cancer biomarkers in serum samples using MALDI FT-ICR mass spectrometry data [J].
Barkauskas, Donald A. ;
An, Hyun Joo ;
Kronewitter, Scott R. ;
de Leoz, Maria Lorna ;
Chew, Helen K. ;
de Vere White, Ralph W. ;
Leiserowitz, Gary S. ;
Miyamoto, Suzanne ;
Lebrilla, Carlito B. ;
Rocke, David M. .
BIOINFORMATICS, 2009, 25 (02) :251-257
[3]   A suite of algorithms for the comprehensive analysis of complex protein mixtures using high-resolution LC-MS [J].
Bellew, Matthew ;
Coram, Marc ;
Fitzgibbon, Matthew ;
Igra, Mark ;
Randolph, Tim ;
Wang, Pei ;
May, Damon ;
Eng, Jimmy ;
Fang, Ruihua ;
Lin, ChenWei ;
Chen, Jinzhi ;
Goodlett, David ;
Whiteaker, Jeffrey ;
Paulovich, Amanda ;
McIntosh, Martin .
BIOINFORMATICS, 2006, 22 (15) :1902-1909
[4]   Improved peak detection and quantification of mass spectrometry data acquired from surface-enhanced laser desorption and ionization by denoising spectra with the undecimated discrete wavelet transform [J].
Coombes, KR ;
Tsavachidis, S ;
Morris, JS ;
Baggerly, KA ;
Hung, MC ;
Kuerer, HM .
PROTEOMICS, 2005, 5 (16) :4107-4117
[5]   Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching [J].
Du, Pan ;
Kibbe, Warren A. ;
Lin, Simon M. .
BIOINFORMATICS, 2006, 22 (17) :2059-2065
[6]   Data reduction of isotope-resolved LC-MS spectra [J].
Du, Peicheng ;
Sudha, Rajagopalan ;
Prystowsky, Michael B. ;
Angeletti, Ruth Hogue .
BIOINFORMATICS, 2007, 23 (11) :1394-1400
[7]  
Herbert C.G., 2003, Mass Spectrometry Basics
[8]   PrepMS: TOF MS data graphical preprocessing tool [J].
Karpievitch, Yuliya V. ;
Hill, Elizabeth G. ;
Smolka, Adam J. ;
Morris, Jeffrey S. ;
Coombes, Kevin R. ;
Baggerly, Keith A. ;
Almeida, Jonas S. .
BIOINFORMATICS, 2007, 23 (02) :264-265
[9]  
Lange Eva, 2006, Pac Symp Biocomput, P243, DOI 10.1142/9789812701626_0023
[10]  
Li X, 2005, STAT BIOL HEALTH, P91