Accumulation horizons and period adding in optically injected semiconductor lasers

被引:94
作者
Bonatto, Cristian [1 ]
Gallas, Jason A. C. [1 ]
机构
[1] Univ Fed Rio Grande do Sul, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil
来源
PHYSICAL REVIEW E | 2007年 / 75卷 / 05期
关键词
D O I
10.1103/PhysRevE.75.055204
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the hierarchical structuring of islands of stable periodic oscillations inside chaotic regions in phase diagrams of single-mode semiconductor lasers with optical injection. Phase diagrams display remarkable accumulation horizons: boundaries formed by the accumulation of infinite cascades of self-similar islands of periodic solutions of ever-increasing period. Each cascade follows a specific period-adding route. The riddling of chaotic laser phases by such networks of periodic solutions may compromise applications operating with chaotic signals such as, e.g., secure communications.
引用
收藏
页数:4
相关论文
共 39 条
[1]  
[Anonymous], SEMICONDUCTOR LASERS
[2]   EXPERIMENTAL CHARACTERIZATION OF SHILNIKOV CHAOS BY STATISTICS OF RETURN TIMES [J].
ARECCHI, FT ;
LAPUCCI, A ;
MEUCCI, R ;
ROVERSI, JA ;
COULLET, PH .
EUROPHYSICS LETTERS, 1988, 6 (08) :677-682
[3]   Self-similarities in the frequency-amplitude space of a loss-modulated CO2 laser -: art. no. 143905 [J].
Bonatto, C ;
Garreau, JC ;
Gallas, JAC .
PHYSICAL REVIEW LETTERS, 2005, 95 (14)
[4]  
BONATTO C, UNPUB PHILOS T R S A
[5]   EVIDENCE OF HOMOCLINIC CHAOS IN THE PLASMA OF A GLOW-DISCHARGE [J].
BRAUN, T ;
LISBOA, JA ;
GALLAS, JAC .
PHYSICAL REVIEW LETTERS, 1992, 68 (18) :2770-2773
[6]   Stability maps of injection-locked laser diodes using the largest Lyapunov exponent [J].
Chlouverakis, KE ;
Adams, MJ .
OPTICS COMMUNICATIONS, 2003, 216 (4-6) :405-412
[7]   SHILNIKOV DYNAMICS IN A PASSIVE Q-SWITCHING LASER [J].
DANGOISSE, D ;
BEKKALI, A ;
PAPOFF, F ;
GLORIEUX, P .
EUROPHYSICS LETTERS, 1988, 6 (04) :335-340
[8]   Sharper focus for a radially polarized light beam [J].
Dorn, R ;
Quabis, S ;
Leuchs, G .
PHYSICAL REVIEW LETTERS, 2003, 91 (23)
[9]  
DORN R, 2003, PHYS REV FOCUS, V12, P19
[10]   Mandelbrot-like sets in dynamical systems with no critical points [J].
Endler, A ;
Gallas, JAC .
COMPTES RENDUS MATHEMATIQUE, 2006, 342 (09) :681-684