On solutions of the Frechet functional equation

被引:24
作者
Almira, Jose Maria [1 ]
Lopez-Moreno, Antonio Jesus
机构
[1] Univ Jaen, Dept Math, EUP Linares, Linare 23700, Spain
[2] Univ Jaen, Dept Math, Jaen 23071, Spain
关键词
frechet functional equation; Darboux theorem;
D O I
10.1016/j.jmaa.2006.11.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we give a new proof of a classical result by Frechet [M. Frechet, Une definition fonctionnelle des polynomes, Nouv. Ann. 9 (4) (1909) 145-162]. Concretely, we prove that, if Delta(k+1)(h) f = 0 and f is continuous at some point or bounded at some nonempty open set, then f is an element of P-k. Moreover, as a consequence of the technique developed for our proof, it is possible to give a description of the closure of the graph for the solutions of the equation. Finally, we characterize some spaces of polynomials of several variables by the use of adequate generalizations of the forward differences operator Delta(k+1)(h). (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:1119 / 1133
页数:15
相关论文
共 19 条
  • [1] ACZEL J, 1992, LECT FUNCTIONAL EQUA
  • [2] ALMIRA JM, 2003, APPL MATH E NOTES, V3, P1
  • [3] Boas R. P., 1972, A Primer of Real Functions
  • [4] Some characterizations of families of surfaces using functional equations
    Castillo, E
    Iglesias, A
    [J]. ACM TRANSACTIONS ON GRAPHICS, 1997, 16 (03): : 296 - 318
  • [5] CASTILLO E, 2001, GAC R SOC MAT ESP, V4, P27
  • [6] Cauchy A. L., 1821, COURS ANAL ECOLE POL
  • [7] Ciesielski Z., 1959, ANN POL MATH, V7, P1
  • [8] Darboux G., 1875, ANN SCI ECOLE NORM S, V4, P57, DOI DOI 10.24033/ASENS.122
  • [9] Frechet M., 1909, Nouv. Ann. Math., V49, P145
  • [10] Frechet M., 1929, J. Math. Pures Appl., V8, P71