Ion-acoustic solitary wave solutions of nonlinear damped Korteweg-de Vries and damped modified Korteweg-de Vries dynamical equations

被引:26
|
作者
Seadawy, A. R. [1 ,2 ]
Iqbal, M. [2 ]
Lu, D. [2 ]
机构
[1] Taibah Univ, Fac Sci, Math Dept, Al Madinah Al Munawarah, Saudi Arabia
[2] Jiangsu Univ, Fac Sci, Zhenjiang 212013, Jiangsu, Peoples R China
关键词
Modified mathematical method; Damped (KdV) equation; Damped modified (KdV) equation; Solitary wave solutions; 02; 30; Jr; 05; 45; Yv; 47; 10; A; 35; +i; Fg; HIGHER-ORDER NONLINEARITY; OBLIQUE MAGNETIC-FIELD; DUSTY PLASMA; 2-TEMPERATURE ELECTRONS; MATHEMATICAL-METHODS; EVOLUTION-EQUATIONS; STABILITY ANALYSIS; EXPLICIT SOLUTIONS; LUMP SOLUTIONS; IONIZATION;
D O I
10.1007/s12648-019-01645-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By using the reductive perturbation technique, the nonlinear dust ion-acoustic solitary wave models of the damped Korteweg-de Vries (D-KdV) and modified damped Korteweg-de Vries (D-mKdV) equations are formulated.We constructed the more general and new solitary wave solutions of nonlinear damped KdV and damped mKdV equations by using the modified mathematical technique. These obtained solutions are more useful in the development of quantum plasma, dynamics of solitons, dynamics of adiabatic parameters, dynamics of fluid and problems of biomedical, industrial phenomena. The new solutions are obtained in the shape of dark solitons, bright solitons, traveling wave and kink and anti-kink wave solitons. We show the physical structure of new solutions by two and three-dimensions graphical to know the physical interpretation of different structure of dust ion-acoustic solitary wave. The calculations show that this new technique is more powerful, effective, straightforward, and fruitfulness to study analytically other nonlinear complex physical models in plasma physics, mathematical physics, fluid mechanics, hydrodynamics, mathematical biology and many other physical sciences.
引用
收藏
页码:1479 / 1489
页数:11
相关论文
共 50 条
  • [1] Ion-acoustic solitary wave solutions of nonlinear damped Korteweg–de Vries and damped modified Korteweg–de Vries dynamical equations
    Aly R. Seadawy
    Mujahid Iqbal
    Dianchen Lu
    Indian Journal of Physics, 2021, 95 : 1479 - 1489
  • [2] On solitary-wave solutions for the coupled Korteweg-de Vries and modified Korteweg-de Vries equations and their dynamics
    Hong, WP
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2006, 61 (3-4): : 125 - 132
  • [3] Numerical inverse scattering for the Korteweg-de Vries and modified Korteweg-de Vries equations
    Trogdon, Thomas
    Olver, Sheehan
    Deconinck, Bernard
    PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (11) : 1003 - 1025
  • [4] ROBUSTNESS OF EXPONENTIAL ATTRACTORS FOR DAMPED KORTEWEG-DE VRIES EQUATIONS
    Chen, Mo
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (08) : 3439 - 3447
  • [5] Decay of Solutions to Damped Korteweg-de Vries Type Equation
    Cavalcanti, Marcelo M.
    Domingos Cavalcanti, Valeria N.
    Faminskii, Andrei
    Natali, Fabio
    APPLIED MATHEMATICS AND OPTIMIZATION, 2012, 65 (02): : 221 - 251
  • [6] Matrix Korteweg-de Vries and modified Korteweg-de Vries hierarchies: Noncommutative soliton solutions
    Carillo, Sandra
    Schiebold, Cornelia
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (05)
  • [7] Numerical studies of the damped Korteweg-de Vries system
    Rincon, M. A.
    Teixeira, F. S.
    Lopez, I. F.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 259 : 294 - 311
  • [8] Oblique collision of modified Korteweg-de Vries ion-acoustic solitons
    Nakamura, Y
    Bailung, H
    Lonngren, KE
    PHYSICS OF PLASMAS, 1999, 6 (09) : 3466 - 3470
  • [9] Integrability of reductions of the discrete Korteweg-de Vries and potential Korteweg-de Vries equations
    Hone, A. N. W.
    van der Kamp, P. H.
    Quispel, G. R. W.
    Tran, D. T.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 469 (2154):
  • [10] Periodic and almost periodic solutions for the damped Korteweg-de Vries equation
    Chen, Mo
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (17) : 7554 - 7565