HLLC solver for ideal relativistic MHD

被引:42
作者
Honkkila, V. [1 ]
Janhunen, P. [1 ]
机构
[1] Univ Helsinki, Dept Phys Sci, FIN-00014 Helsinki, Finland
基金
芬兰科学院;
关键词
D O I
10.1016/j.jcp.2006.09.027
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
An approximate Riemann solver of Godunov type for ideal relativistic magnetohydrodynamic equations (RMHD) named as HLLC ("C" denotes contact) is developed. In HLLC the Riernann fan is approximated by two intermediate states, which are separated by the entropy wave. Numerical tests show that HLLC resolves contact discontinuity more accurately than the Harten-Lax-van Leer (HLL) method and an isolated contact discontinuity exactly. (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:643 / 656
页数:14
相关论文
共 16 条
[1]  
Anile A. M., 1989, Relativistic Fluids and Magneto-Fluids: With Applications in Astrophysics and Plasma Physics
[2]  
[Anonymous], 1967, RELATIVISTIC HYDRODY
[3]   Total variation diminishing scheme for relativistic magnetohydrodynamics [J].
Balsara, D .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2001, 132 (01) :83-101
[4]   On the choice of wavespeeds for the HLLC Riemann solver [J].
Batten, P ;
Clarke, N ;
Lambert, C ;
Causon, DM .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1997, 18 (06) :1553-1570
[5]   SIMPLIFIED 2ND-ORDER GODUNOV-TYPE METHODS [J].
DAVIS, SF .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1988, 9 (03) :445-473
[6]   An efficient shock-capturing central-type scheme for multidimensional relativistic flows - I. Hydrodynamics [J].
Del Zanna, L ;
Bucciantini, N .
ASTRONOMY & ASTROPHYSICS, 2002, 390 (03) :1177-1186
[7]   An HLLC-type approximate Riemann solver for ideal magnetohydrodynamics [J].
Gurski, KF .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 25 (06) :2165-2187
[8]   ON UPSTREAM DIFFERENCING AND GODUNOV-TYPE SCHEMES FOR HYPERBOLIC CONSERVATION-LAWS [J].
HARTEN, A ;
LAX, PD ;
VAN LEER, B .
SIAM REVIEW, 1983, 25 (01) :35-61
[9]   An approximate Riemann solver for relativistic magnetohydrodynamics [J].
Koldoba, AV ;
Kuznetsov, OA ;
Ustyugova, GV .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2002, 333 (04) :932-942
[10]  
LEVEQUE RJ, 1998, COMPUTATINAL METHODS