On the Schatten class membership of Hankel operators on the unit ball

被引:18
作者
Xia, JB [1 ]
机构
[1] SUNY Buffalo, Dept Math, Buffalo, NY 14260 USA
关键词
D O I
10.1215/ijm/1258130992
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A well-known theorem of K. Zhu [7] asserts that, for 2 less than or equal to p < infinity, the Hankel operators H-f and H-(f)over bar on the Bergman space L-a(2)(B-n, dV) of the unit ball belong to the Schatten class C-p if and only if the mean oscillation MO(f)(z) = {(\f\(2))over tilde(z)-\(f)over tilde (z)\(2)}(1/2) belongs to L-p(B-n, 1-\z\(2))(-n-1)dV(z)). It is well known that, for trivial reasons, this theorem cannot be extended to the case p less than or equal to 2n/(n+1). This paper fills the gap between 2n/(n+1) and 2. More precisely, we prove that, when 2n/(n+1) < p < 2, the same theorem holds true.
引用
收藏
页码:913 / 928
页数:16
相关论文
共 8 条
[1]  
[Anonymous], CONT MATH
[2]   HANKEL-OPERATORS ON WEIGHTED BERGMAN SPACES [J].
ARAZY, J ;
FISHER, SD ;
PEETRE, J .
AMERICAN JOURNAL OF MATHEMATICS, 1988, 110 (06) :989-1053
[3]   CHARACTERIZATIONS OF CERTAIN CLASSES OF HANKEL-OPERATORS ON THE BERGMAN SPACES OF THE UNIT DISK [J].
LUECKING, DH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1992, 110 (02) :247-271
[4]  
RUDIN W, 1980, FUNCTION THEORY UNIT
[5]   Hankel operators in the Bergman space and Schatten p-classes:: The case 1&lt;p&lt;2 [J].
Xia, JB .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (12) :3559-3567
[7]  
ZHU K, 1990, OPERATOR THEORY FUNC