UPPER BOUNDS FOR NUMERICAL RADIUS INEQUALITIES INVOLVING OFF-DIAGONAL OPERATOR MATRICES

被引:41
作者
Bakherad, Mojtaba [1 ]
Shebrawi, Khalid [2 ]
机构
[1] Univ Sistan & Baluchestan, Fac Math, Dept Math, Zahedan, Iran
[2] Al Balqa Appl Univ, Dept Math, Salt, Jordan
关键词
numerical radius off-diagonal part; positive operator; Young inequality; generalized Euclidean operator radius; FROBENIUS COMPANION MATRIX; HILBERT-SPACE OPERATORS;
D O I
10.1215/20088752-2017-0029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we establish some upper bounds for numerical radius inequalities, including those of 2 x 2 operator matrices and their offdiagonal parts. Among other inequalities, it is shown that if T = [(Y 0) (0 X)], then omega(r)(T) <= 2(r-2) parallel to f(2r) (vertical bar X vertical bar) + g(2r) (vertical bar Y*vertical bar)parallel to(1/2)parallel to f(2r) (vertical bar Y vertical bar) + g(2r) (vertical bar X*vertical bar)parallel to(1/2) and omega(r) (T) <= 2(r-2) parallel to f(2r) (vertical bar X vertical bar) + f(2r) (vertical bar Y*vertical bar)parallel to(1/2)parallel to g(2r) (vertical bar Y vertical bar) + g(2r) (vertical bar X*vertical bar)parallel to(1/2), where X, Y are bounded linear operators on a Hilbert space H, r >= 1, and f, g are nonnegative continuous functions on [0, infinity) satisfying the relation f(t)g(t) = t (t is an element of [0, infinity)). Moreover, we present some inequalities involving the generalized Euclidean operator radius of operators T-1 . . . T-n.
引用
收藏
页码:297 / 309
页数:13
相关论文
共 17 条
[1]   Numerical radius inequalities for n x n operator matrices [J].
Abu-Omar, Amer ;
Kittaneh, Fuad .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 468 :18-26
[2]   ESTIMATES FOR THE NUMERICAL RADIUS AND THE SPECTRAL RADIUS OF THE FROBENIUS COMPANION MATRIX AND BOUNDS FOR THE ZEROS OF POLYNOMIALS [J].
Abu-Omar, Amer ;
Kittaneh, Fuad .
ANNALS OF FUNCTIONAL ANALYSIS, 2014, 5 (01) :56-62
[3]   A generalization of two refined Young inequalities [J].
Al-Manasrah, Yousef ;
Kittaneh, Fuad .
POSITIVITY, 2015, 19 (04) :757-768
[4]   MATRIX SUBADDITIVITY INEQUALITIES AND BLOCK-MATRICES [J].
Bourin, Jean-Christophe .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2009, 20 (06) :679-691
[5]  
Gustafson KE., 1997, Numerical Rang, DOI [10.1007/978-1-4613-8498-4, DOI 10.1007/978-1-4613-8498-4]
[6]  
Hajmohamadi M., J MATH INEQUAL
[7]  
Halmos P.R., 1982, Encyclopedia of Mathematics and its Applications, V19
[8]   Numerical Radius Inequalities for Certain 2 x 2 Operator Matrices [J].
Hirzallah, Omar ;
Kittaneh, Fuad ;
Shebrawi, Khalid .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2011, 71 (01) :129-147
[9]   NOTES ON SOME INEQUALITIES FOR HILBERT-SPACE OPERATORS [J].
KITTANEH, F .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1988, 24 (02) :283-293
[10]   A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix [J].
Kittaneh, F .
STUDIA MATHEMATICA, 2003, 158 (01) :11-17