Anisotropic Holder and Sobolev spaces for hyperbolic diffeomorphisms

被引:100
作者
Baladi, Viviane [1 ]
Tsujii, Masato
机构
[1] CNRS, UMR 7586, Inst Math Jussieu, F-75252 Paris 05, France
[2] Hokkaido Univ, Dept Math, Sapporo, Hokkaido 060, Japan
关键词
hyperbolic dynamics; transfer operator; Ruelle operator; spectrum; axiom A; Anosov; Perron-Frobenius; quasi-compact;
D O I
10.5802/aif.2253
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study spectral properties of transfer operators for diffeomorphisms T : X -> X on a Riemannian manifold X. Suppose that Omega is an isolated hyperbolic subset for T, with a compact isolating neighborhood V subset of X. We first introduce Banach spaces of distributions supported on V, which are anisotropic versions of the usual space of C(P) functions C(P)(V) and of the generalized Sobolev spaces W(P,t)(V), respectively. We then show that the transfer operators associated to T and a smooth weight g extend boundedly to these spaces, and we give bounds on the essential spectral radii of such extensions in terms of hyperbolicity exponents.
引用
收藏
页码:127 / 154
页数:28
相关论文
共 16 条
[1]  
Avila A, 2006, DISCRETE CONT DYN-A, V15, P21
[2]  
Baladi V, 2005, CONTEMP MATH, V385, P123
[3]  
Baladi V., 2000, ADV SERIES NONLINEAR
[4]   Ruelle-Perron-Yrobenius spectrum for Anosov maps [J].
Blank, M ;
Keller, G ;
Liverani, C .
NONLINEARITY, 2002, 15 (06) :1905-1973
[5]   The flat-trace asymptotics of a uniform system of contractions [J].
Fried, D .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1995, 15 :1061-1073
[6]   MEROMORPHIC ZETA-FUNCTIONS FOR ANALYTIC FLOWS [J].
FRIED, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 174 (01) :161-190
[7]   Banach spaces adapted to Anosov systems [J].
Gouëzel, S ;
Liverani, C .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2006, 26 :189-217
[8]   A sharp formula for the essential spectral radius of the Ruelle transfer operator on smooth and Holder spaces [J].
Gundlach, VM ;
Latushkin, Y .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2003, 23 :175-191
[10]  
HORMANDER L, 1994, GRUNDLEHREN MATH WIS, V274