Nitric oxide down-regulates MKP-3 mRNA levels -: Involvement in endothelial cell protection from apoptosis

被引:113
作者
Rössig, L [1 ]
Haendeler, J [1 ]
Hermann, C [1 ]
Malchow, P [1 ]
Urbich, C [1 ]
Zeiher, AM [1 ]
Dimmeler, S [1 ]
机构
[1] Univ Frankfurt, Div Cardiol, Dept Internal Med 4, D-60590 Frankfurt, Germany
关键词
D O I
10.1074/jbc.M002283200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
MAP kinase-dependent phosphorylation processes have been shown to interfere with the degradation of the antiapoptotic protein Bcl-2. The cytosolic MAP kinase phosphatase MAP kinase phosphatase-3 (MKP-3) induces apoptosis of endothelial cells in response to tumor necrosis factor cu (TNF alpha) via dephosphorylation of the MAP kinase ERK1/2, Leading to Bcl-2 proteolysis. Here we report that the endothelial cell survival factor nitric oxide (NO) down-regulated MKP-3 by destabilization of MKP-3 mRNA. This effect of NO was paralleled by a decrease in MKP-3 protein levels. Moreover, ERK1/2 was found to be protected against TNF alpha-induced dephosphorylation by coincubation of endothelial cells with the NO donor. Subsequently, both the decrease in Bcl-2 protein levels and the mitochondrial release of cytochrome c in response to TNF alpha were largely prevented by exogenous NO. In cells overexpressing MKP-3, no differences in phosphatase activity in the presence or absence of NO were found, excluding potential posttranslational modifications of MKP-3 protein by NO. These data demonstrate that upstream of the S-nitrosylation of caspase-3, NO exerts additional antiapoptotic effects in endothelial cells, which rely on the down-regulation of MKP-3 mRNA.
引用
收藏
页码:25502 / 25507
页数:6
相关论文
共 42 条
[1]   Death receptors: Signaling and modulation [J].
Ashkenazi, A ;
Dixit, VM .
SCIENCE, 1998, 281 (5381) :1305-1308
[2]  
Batt DB, 1998, METH MOL B, V86, P15
[3]   Posttranslational modification of Bcl-2 facilitates its proteasome-dependent degradation: Molecular characterization of the involved signaling pathway [J].
Breitschopf, K ;
Haendeler, J ;
Malchow, P ;
Zeiher, AM ;
Dimmeler, S .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (05) :1886-1896
[4]   Catalytic activation of the phosphatase MKP-3 by ERK2 mitogen-activated protein kinase [J].
Camps, M ;
Nichols, A ;
Gillieron, C ;
Antonsson, B ;
Muda, M ;
Chabert, C ;
Boschert, U ;
Arkinstall, S .
SCIENCE, 1998, 280 (5367) :1262-1265
[5]   Transforming growth factor β1 rescues serum deprivation-induced apoptosis via the mitogen-activated protein kinase (MAPK) pathway in macrophages [J].
Chin, BY ;
Petrache, I ;
Choi, AMK ;
Choi, ME .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (16) :11362-11368
[6]  
COHEN JJ, 1993, IMMUNOL TODAY, V14, P126, DOI 10.1016/0167-5699(93)90214-6
[7]   Phosphorylation of endothelial nitric oxide synthase in response to fluid shear stress [J].
Corson, MA ;
James, NL ;
Latta, SE ;
Nerem, RM ;
Berk, BC ;
Harrison, DG .
CIRCULATION RESEARCH, 1996, 79 (05) :984-991
[8]   Nitric oxide - an endothelial cell survival factor [J].
Dimmeler, S ;
Zeiher, AM .
CELL DEATH AND DIFFERENTIATION, 1999, 6 (10) :964-968
[9]   Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation [J].
Dimmeler, S ;
Fleming, I ;
Fisslthaler, B ;
Hermann, C ;
Busse, R ;
Zeiher, AM .
NATURE, 1999, 399 (6736) :601-605
[10]   Dephosphorylation targets Bcl-2 for ubiquitin-dependent degradation: A link between the apoptosome and the proteasome pathway [J].
Dimmeler, S ;
Breitschopf, K ;
Haendeler, J ;
Zeiher, AM .
JOURNAL OF EXPERIMENTAL MEDICINE, 1999, 189 (11) :1815-1822