Probabilistic interpretation of a coupled system of Hamilton-Jacobi-Bellman equations

被引:8
作者
Buckdahn, Rainer [1 ]
Hu, Ying [2 ]
机构
[1] Univ Bretagne Occidentale, Dept Math, F-29238 Brest 3, France
[2] Univ Rennes 1, IRMAR, F-35042 Rennes, France
关键词
DIFFERENTIAL-EQUATIONS;
D O I
10.1007/s00028-010-0060-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we give a probabilistic interpretation for a coupled system of Hamilton-Jacobi-Bellman equations using the value function of a stochastic control problem. First we introduce this stochastic control problem. Then we prove that the value function of this problem is deterministic and satisfies a (strong) dynamic programming principle. And finally, the value function is shown to be the unique viscosity solution of the coupled system of Hamilton-Jacobi-Bellman equations.
引用
收藏
页码:529 / 549
页数:21
相关论文
共 8 条
[1]  
Barles G., 1997, STOCHASTICS STOCHAST, V60, P57
[2]   Pricing of American contingent claims with jump stock price and constrained portfolios [J].
Buckdahn, R ;
Hu, Y .
MATHEMATICS OF OPERATIONS RESEARCH, 1998, 23 (01) :177-203
[3]   Stochastic differential games and viscosity solutions of Hamilton-Jacobi-Bellman-Isaacs equations [J].
Buckdahn, Rainer ;
Li, Juan .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2008, 47 (01) :444-475
[4]  
Dunford N., 1988, LINEAR OPERATORS
[5]   Probabilistic interpretation of a system of semi-linear parabolic partial differential equations [J].
Pardoux, E ;
Pradeilles, F ;
Rao, ZS .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1997, 33 (04) :467-490
[6]  
Peng S., 1992, STOCHASTICS INT J PR, V38, P119
[7]  
Peng S. G., 1997, TOPICS STOCHASTIC AN
[8]   Backward stochastic differential equations with jumps and related non-linear expectations [J].
Royer, Manuela .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2006, 116 (10) :1358-1376