Law of Large Numbers for Random LU-Fuzzy Numbers: Some Results in the Context of Simulation of Financial Quantities

被引:0
作者
Holcapek, Michal [1 ]
Tichy, Tomas [1 ]
机构
[1] Tech Univ Ostrava, Fac Econ, Dept Finance, Ostrava 70121, Czech Republic
来源
PROCEEDINGS OF THE 14TH INTERNATIONAL CONFERENCE ON FINANCE AND BANKING | 2014年
关键词
fuzzy sets; random; LU-fuzzy number; approximation; law of large numbers; RANDOM-VARIABLES; OPERATIONS;
D O I
暂无
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
Financial problems can be analyzed by several ways. In the standard case, we assume that a given financial quantity in question is a stochastic (or random) variable, ie. it follows some probability distribution and its possible states can get prescribed particular probabilities. However, in financial modeling it can appear that the estimation of parameters of such models (e.g. volatility) does not lead to reliable results, so that it can be fruitful to incorporate some kind of impreciseness. One can recognize an unnatural simplification of parameters that can lead to a loss of important information hidden in data. If one wants to apply Monte Carlo simulation to analyze a financial problem with values expressed by imprecisely defined numbers, it is important to show that random variables with imprecisely defined numbers satisfy the (strong) law of large numbers, as well. Otherwise such approach would have no sense. The aim of the paper is to provide a justification to this novel approach. Besides theoretical proves we show also via empirical example that the law holds for a given type of imprecise number.
引用
收藏
页码:124 / 130
页数:7
相关论文
共 17 条
[1]   PRICING OF OPTIONS AND CORPORATE LIABILITIES [J].
BLACK, F ;
SCHOLES, M .
JOURNAL OF POLITICAL ECONOMY, 1973, 81 (03) :637-654
[2]   OPERATIONS ON FUZZY NUMBERS [J].
DUBOIS, D ;
PRADE, H .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1978, 9 (06) :613-626
[3]   Approximate fuzzy arithmetic operations using monotonic interpolations [J].
Guerra, ML ;
Stefanini, L .
FUZZY SETS AND SYSTEMS, 2005, 150 (01) :5-33
[4]  
Holcapek M, 2012, PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON FINANCE AND BANKING, P121
[5]  
JANG L. C., 1996, FUZZY SETS SYSTEMS, V99, P97
[6]   Weak laws of large numbers for fuzzy random variables [J].
Joo, SY .
FUZZY SETS AND SYSTEMS, 2004, 147 (03) :453-464
[7]   LIMIT-THEOREMS FOR FUZZY RANDOM-VARIABLES [J].
KLEMENT, EP ;
PURI, ML ;
RALESCU, DA .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1986, 407 (1832) :171-182
[8]   THE STRONG LAW OF LARGE NUMBERS FOR FUZZY RANDOM-VARIABLES [J].
KRUSE, R .
INFORMATION SCIENCES, 1982, 28 (03) :233-241
[9]   FUZZY RANDOM-VARIABLES .2. ALGORITHMS AND EXAMPLES FOR THE DISCRETE CASE [J].
KWAKERNAAK, H .
INFORMATION SCIENCES, 1979, 17 (03) :253-278
[10]   A STRONG LAW OF LARGE NUMBERS FOR FUZZY RANDOM-VARIABLES [J].
MIYAKOSHI, M ;
SHIMBO, M .
FUZZY SETS AND SYSTEMS, 1984, 12 (02) :133-142