Stacking faults as quantum wells in nanowires: Density of states, oscillator strength, and radiative efficiency

被引:39
作者
Corfdir, P. [1 ]
Hauswald, C. [1 ]
Zettler, J. K. [1 ]
Flissikowski, T. [1 ]
Laehnemann, J. [1 ]
Fernandez-Garrido, S. [1 ]
Geelhaar, L. [1 ]
Grahn, H. T. [1 ]
Brandt, O. [1 ]
机构
[1] Paul Drude Inst Festkorperelekt, D-10117 Berlin, Germany
关键词
OPTICAL-PROPERTIES; GAN; LUMINESCENCE; EXCITONS; LOCALIZATION; LIFETIMES;
D O I
10.1103/PhysRevB.90.195309
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We investigate the nature of excitons bound to I-1 basal-plane stacking faults [(I-1, X)] in GaN nanowire ensembles by continuous-wave and time-resolved photoluminescence spectroscopy. Based on the linear increase of the radiative lifetime of these excitons with temperature, they are demonstrated to exhibit a two-dimensional density of states, i.e., a basal-plane stacking fault acts as a quantum well. From the slope of the linear increase, we determine the oscillator strength of the (I-1, X) and show that the value obtained reflects the presence of large internal electrostatic fields across the stacking fault. While the recombination of donor-bound and free excitons in the GaN nanowire ensemble is dominated by nonradiative phenonema already at 10 K, we observe that the (I-1, X) recombines purely radiatively up to 60 K. This finding provides important insight into the nonradiative recombination processes in GaN nanowires. First, the radiative lifetime of about 6 ns measured at 60 K sets an upper limit for the surface recombination velocity of 210 cm s(-1) considering the nanowires mean diameter of 50 nm. Second, the density of nonradiative centers responsible for the fast decay of donor-bound and free excitons cannot be higher than 6 x 10(16) cm(-3). As a consequence, the nonradiative decay of donor-bound excitons in these GaN nanowire ensembles has to occur indirectly via the free exciton state.
引用
收藏
页数:8
相关论文
共 55 条
[1]   A Story Told by a Single Nanowire: Optical Properties of Wurtzite GaAs [J].
Ahtapodov, Lyubomir ;
Todorovic, Jelena ;
Olk, Phillip ;
Mjaland, Terje ;
Slattnes, Patrick ;
Dheeraj, Dasa L. ;
van Helvoort, Antonius T. J. ;
Fimland, Bjorn-Ove ;
Weman, Helge .
NANO LETTERS, 2012, 12 (12) :6090-6095
[2]   Crystal Phase Quantum Dots [J].
Akopian, N. ;
Patriarche, G. ;
Liu, L. ;
Harmand, J. -C. ;
Zwiller, V. .
NANO LETTERS, 2010, 10 (04) :1198-1201
[3]   Luminescence related to stacking faults in heteroepitaxially grown wurtzite GaN [J].
Albrecht, M ;
Christiansen, S ;
Salviati, G ;
ZanottiFregonara, C ;
Rebane, YT ;
Shreter, YG ;
Mayer, M ;
Pelzmann, A ;
Kamp, M ;
Ebeling, KJ ;
Bremser, MD ;
Davis, RD ;
Strunk, HP .
GALLIUM NITRIDE AND RELATED MATERIALS II, 1997, 468 :293-298
[4]   Twinning superlattices in indium phosphide nanowires [J].
Algra, Rienk E. ;
Verheijen, Marcel A. ;
Borgstrom, Magnus T. ;
Feiner, Lou-Fe ;
Immink, George ;
van Enckevort, Willem J. P. ;
Vlieg, Elias ;
Bakkers, Erik P. A. M. .
NATURE, 2008, 456 (7220) :369-372
[5]   RADIATIVE LIFETIME OF FREE-EXCITONS IN QUANTUM-WELLS [J].
ANDREANI, LC ;
TASSONE, F ;
BASSANI, F .
SOLID STATE COMMUNICATIONS, 1991, 77 (09) :641-645
[6]   Modification of carrier localization in basal-plane stacking faults: The effect of Si-doping in a-plane GaN [J].
Badcock, T. J. ;
Kappers, M. J. ;
Moram, M. A. ;
Dawson, P. ;
Humphreys, C. J. .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2012, 249 (03) :498-502
[7]   Wurtzite-zincblende superlattices in InAs nanowires using a supply interruption method [J].
Bolinsson, Jessica ;
Caroff, Philippe ;
Mandl, Bernhard ;
Dick, Kimberly A. .
NANOTECHNOLOGY, 2011, 22 (26)
[8]   Luminescence properties and defects in GaN nanocolumns grown by molecular beam epitaxy [J].
Calleja, E ;
Sánchez-García, MA ;
Sánchez, FJ ;
Calle, F ;
Naranjo, FB ;
Muñoz, E ;
Jahn, U ;
Ploog, K .
PHYSICAL REVIEW B, 2000, 62 (24) :16826-16834
[9]  
Caroff P, 2009, NAT NANOTECHNOL, V4, P50, DOI [10.1038/nnano.2008.359, 10.1038/NNANO.2008.359]
[10]   Quantum-confined single photon emission at room temperature from SiC tetrapods [J].
Castelletto, Stefania ;
Bodrog, Zoltan ;
Magyar, Andrew P. ;
Gentle, Angus ;
Gali, Adam ;
Aharonovich, Igor .
NANOSCALE, 2014, 6 (17) :10027-10032