Improved salt tolerance of transgenic wheat by introducing betA gene for glycine betaine synthesis

被引:46
作者
He, Chunmei [1 ]
Yang, Aifang [1 ]
Zhang, Weiwei [1 ]
Gao, Qiang [1 ]
Zhang, Juren [1 ]
机构
[1] Shandong Univ, Sch Life Sci, Jinan 250100, Peoples R China
关键词
Wheat (Triticum aestivum L.); Transgene; Salt stress; Glycine betaine; STRESS TOLERANCE; ELECTRON-TRANSPORT; FREEZING TOLERANCE; DROUGHT TOLERANCE; CHOLINE OXIDASE; ABIOTIC-STRESS; SALINITY; PLANTS; PHOTOSYNTHESIS; BIOSYNTHESIS;
D O I
10.1007/s11240-009-9665-0
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
A betA gene encoding choline dehydrogenase from Escherichia coli (E. coli) was transformed into wheat (Triticum aestivum L.) via Agrobacterium-mediated transformation. PCR amplification and Southern blotting confirmed the existence of transgene in transformed plants and their progeny. Levels of expression of the betA gene varied among the different transgenic lines based on RT-PCR analysis. Under salt stress conditions, transgenic lines L2 and L3 had higher levels of glycine betaine and chlorophyll, lower Na+/K+ ratios and solute potential, and less cell membrane damage. These lines also retained moderately higher photosynthesis rates and more vigorous growth than the wild-type line at 200 mM NaCl. In a field trial in a high salt field, transgenic lines L2 and L3 had higher germination rates, more tillers and higher grain yields in comparison to the wild-type plants. This suggested that the transgenic plants were more tolerant to salt stress and have potential for breeding salt-tolerant wheat.
引用
收藏
页码:65 / 78
页数:14
相关论文
共 53 条
[1]   Stabilization of oxygen evolution and primary electron transport reactions in photosystem II against heat stress with glycinebetaine and sucrose [J].
Allakhverdiev, SI ;
Feyziev, YM ;
Ahmed, A ;
Hayashi, H ;
Aliev, JA ;
Klimov, VV ;
Murata, N ;
Carpentier, R .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY, 1996, 34 (2-3) :149-157
[2]   Betaine improves freezing tolerance in wheat [J].
Allard, F ;
Houde, M ;
Kröl, M ;
Ivanov, A ;
Huner, NPA ;
Sarhan, F .
PLANT AND CELL PHYSIOLOGY, 1998, 39 (11) :1194-1202
[3]   COPPER ENZYMES IN ISOLATED CHLOROPLASTS - POLYPHENOLOXIDASE IN BETA-VULGARIS [J].
ARNON, DI .
PLANT PHYSIOLOGY, 1949, 24 (01) :1-15
[4]   Relationship between ion accumulation and growth in two spring wheat lines differing in salt tolerance at different growth stages [J].
Ashraf, M ;
Khanum, A .
JOURNAL OF AGRONOMY AND CROP SCIENCE, 1997, 178 (01) :39-51
[5]   VARIABILITY IN SALT TOLERANCE OF 9 SPRING WHEAT CULTIVARS [J].
ASHRAF, M ;
MCNEILLY, T .
JOURNAL OF AGRONOMY AND CROP SCIENCE-ZEITSCHRIFT FUR ACKER UND PFLANZENBAU, 1988, 160 (01) :14-21
[6]   RAPID DETERMINATION OF FREE PROLINE FOR WATER-STRESS STUDIES [J].
BATES, LS ;
WALDREN, RP ;
TEARE, ID .
PLANT AND SOIL, 1973, 39 (01) :205-207
[7]   PLANT PRODUCTIVITY AND ENVIRONMENT [J].
BOYER, JS .
SCIENCE, 1982, 218 (4571) :443-448
[8]   Nitrogen metabolism in durum wheat under salinity: accumulation of proline and glycine betaine [J].
Carillo, Petronia ;
Mastrolonardo, Gabriella ;
Nacca, Francesco ;
Parisi, Danila ;
Verlotta, Angelo ;
Fuggi, Amodio .
FUNCTIONAL PLANT BIOLOGY, 2008, 35 (05) :412-426
[9]   Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes [J].
Chen, THH ;
Murata, N .
CURRENT OPINION IN PLANT BIOLOGY, 2002, 5 (03) :250-257
[10]   A root's ability to retain K+ correlates with salt tolerance in wheat [J].
Cuin, Tracey Ann ;
Betts, Stewart A. ;
Chalmandrier, Remi ;
Shabala, Sergey .
JOURNAL OF EXPERIMENTAL BOTANY, 2008, 59 (10) :2697-2706