Derivations of the Lie algebra of infinite strictly upper triangular matrices over a commutative ring

被引:4
作者
Holubowski, Waldemar [1 ]
Kashuba, Iryna [2 ]
Zurek, Sebastian [1 ]
机构
[1] Silesian Tech Univ, Inst Math, Kaszubska 23, PL-44101 Gliwice, Poland
[2] Univ Sao Paulo, Dept Math & Stat, Sao Paulo, Brazil
关键词
Commutative ring; derivations of Lie algebra; infinite dimensional Lie algebra; strictly triangular infinite matrix; DERIVABLE MAPPINGS; NEST-ALGEBRAS; TRIPLE;
D O I
10.1080/00927872.2016.1277388
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let N(infinity,R) be the Lie algebra of infinite strictly upper triangular matrices over a commutative ring R. We show that every derivation of N(infinity,R) is a sum of diagonal and inner derivations.
引用
收藏
页码:4679 / 4685
页数:7
相关论文
共 21 条
[1]   Characterizations of derivations on triangular rings: Additive maps derivable at idempotents [J].
An, Runling ;
Hou, Jinchuan .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (5-7) :1070-1080
[2]  
[Anonymous], 1962, USPEHI MAT NAUK
[3]   DERIVATIONS AND AUTOMORPHISMS OF NONASSOCIATIVE MATRIX ALGEBRAS [J].
BENKART, GM ;
OSBORN, JM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 263 (02) :411-430
[4]   Lie derivations on triangular matrices [J].
Benkovic, Dominik .
LINEAR & MULTILINEAR ALGEBRA, 2007, 55 (06) :619-626
[5]   Lie triple derivations of unital algebras with idempotents [J].
Benkovic, Dominik .
LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (01) :141-165
[6]   Local Lie derivations of nest algebras [J].
Chen, Lin ;
Lu, Fangyan .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 475 :62-72
[7]   Local and 2-Local Lie Derivations of Operator Algebras on Banach Spaces [J].
Chen, Lin ;
Lu, Fangyan ;
Wang, Ting .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2013, 77 (01) :109-121
[8]   A Note on Constants of Integral Derivations in Semiprime Rings [J].
Chen, Yen-Jen ;
Lee, Tsiu-Kwen .
COMMUNICATIONS IN ALGEBRA, 2013, 41 (02) :792-796
[9]   NONLINEAR LIE-TYPE DERIVATIONS OF VON NEUMANN ALGEBRAS AND RELATED TOPICS [J].
Fosner, Ajda ;
Wei, Feng ;
Xiao, Zhankui .
COLLOQUIUM MATHEMATICUM, 2013, 132 (01) :53-71
[10]   Characterizations of Nonlinear Lie Derivations of B(X) [J].
Huo, Donghua ;
Zheng, Baodong ;
Liu, Hongyu .
ABSTRACT AND APPLIED ANALYSIS, 2013,