Characterization and magnetic properties of electrospun Co1-x Zn x Fe2O4 nanofibers

被引:38
作者
Shen, X. Q. [1 ]
Xiang, J. [1 ,2 ]
Song, F. Z. [1 ]
Liu, M. Q. [1 ]
机构
[1] Jiangsu Univ, Sch Mat Sci & Engn, Zhenjiang 212013, Peoples R China
[2] Jiangsu Univ Sci & Technol, Sch Math & Phys, Zhenjiang 212003, Peoples R China
来源
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING | 2010年 / 99卷 / 01期
基金
中国国家自然科学基金;
关键词
THIN-FILMS; FERRITE; NANOPARTICLES; FABRICATION; NANOTUBES; NANOSTRUCTURES; CO1-XZNXFE2O4; DEPOSITION; NANOWIRES; ARRAYS;
D O I
10.1007/s00339-009-5494-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
By the electrospinning and calcination techniques, we have prepared uniform nanofibers of Co1-x Zn (x) Fe2O4 (0.0a parts per thousand currency signxa parts per thousand currency sign0.5) ferrites with diameters of 110-130 nm. The Co1-x Zn (x) Fe2O4 nanofibers are single-phase spinels and the lattice constant with Zn content deviates from the Vegard's law for these Co1-x Zn (x) Fe2O4 nanofibers. The Co1-x Zn (x) Fe2O4 nanocrystal grains by which are built nanofibers increase with calcination temperature. Variations of coercivity and saturation magnetization with calcination temperature can be explained in terms of the grain-size (D) effect. The coercivity (H (c)) of Co0.5Zn0.5Fe2O4 nanofibers varies as D (0.65) and basically follows the predicted D (2/3) dependence based on the random anisotropy model in a D range below the single-domain size around 40 nm. The saturation magnetization of Co1-x Zn (x) Fe2O4 nanofibers initially increases with increasing Zn content, reaches a maximum value at x=0.3 and then decreases with further increase of Zn content, while the coercivity exhibits a continuous reduction with the increase of Zn content.
引用
收藏
页码:189 / 195
页数:7
相关论文
共 35 条
[1]   Transport and magnetic properties of Co-Zn-La ferrite [J].
Ahmed, MA ;
Okasha, N ;
Gabal, M .
MATERIALS CHEMISTRY AND PHYSICS, 2004, 83 (01) :107-113
[2]   Preparation and properties of temperature-sensitive magnetic fluid having Co0.5Zn0.5Fe2O4 and Mn0.5Zn0.5Fe2O4 nanoparticles [J].
Arulmurugan, R ;
Vaidyanathan, G ;
Sendhilnathan, S ;
Jeyadevan, B .
PHYSICA B-CONDENSED MATTER, 2005, 368 (1-4) :223-230
[3]   Template-based, near-ambient synthesis of crystalline metal-oxide nanotubes, nanowires and coaxial nanotubes [J].
Cochran, Rebecca E. ;
Shyue, Jing-Jong ;
Padture, Nitin P. .
ACTA MATERIALIA, 2007, 55 (09) :3007-3014
[4]   Optimization of parameters for the synthesis of nano-sized Co1-xZnxFe2O4, (0 ≤ x ≤ 0.8) by microwave refluxing [J].
Giri, J ;
Sriharsha, T ;
Bahadur, D .
JOURNAL OF MATERIALS CHEMISTRY, 2004, 14 (05) :875-880
[5]   Structure and properties of Zn-doped CoFe2O4 thin films via a sol-gel method [J].
He, Hong-cai ;
Ying, Ming-hao ;
Zhou, Jian-ping ;
Nan, Ce-Wen .
JOURNAL OF ELECTROCERAMICS, 2008, 21 (1-4) :686-689
[6]   Electrospun MnFe2O4 nanofibers:: Preparation and morphology [J].
Ju, Young-Wan ;
Park, Jae-Hyun ;
Jung, Hong-Ryun ;
Cho, Sung-June ;
Lee, Wan-Jin .
COMPOSITES SCIENCE AND TECHNOLOGY, 2008, 68 (7-8) :1704-1709
[7]   Fabrication and characterization of cobalt ferrite (CoFe2O4) nanofibers by electrospinning [J].
Ju, Young-Wan ;
Park, Jae-Hyun ;
Jung, Hong-Ryun ;
Cho, Sung-June ;
Lee, Wan-Jin .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2008, 147 (01) :7-12
[8]   Magnetic nanofibers of nickel ferrite prepared by electrospinning [J].
Li, D ;
Herricks, T ;
Xia, YN .
APPLIED PHYSICS LETTERS, 2003, 83 (22) :4586-4588
[9]   Electrospinning: A simple and versatile technique for producing ceramic nanofibers and nanotubes [J].
Li, Dan ;
McCann, Jesse T. ;
Xia, Younan .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2006, 89 (06) :1861-1869
[10]   Large-scale synthesis of necklace-like single-crystalline PbTiO3 nanowires [J].
Lu, XF ;
Zhang, DL ;
Zhao, QD ;
Wang, C ;
Zhang, WJ ;
Wei, Y .
MACROMOLECULAR RAPID COMMUNICATIONS, 2006, 27 (01) :76-80