Fractional Dynamics of HIV with Source Term for the Supply of New CD4+ T-Cells Depending on the Viral Load via Caputo-Fabrizio Derivative

被引:46
作者
Shah, Zahir [1 ,2 ]
Jan, Rashid [3 ]
Kumam, Poom [2 ,4 ,5 ]
Deebani, Wejdan [6 ]
Shutaywi, Meshal [6 ]
机构
[1] Univ Lakki Marwat, Dept Math, Lakki Marwat 28420, Pakistan
[2] Univ Technol Thonburi KMUTT, Fac Sci, Ctr Excellence Theoret & Computat Sci TaCS CoE, 126 Pracha Uthit Rd, Bangkok 10140, Thailand
[3] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
[4] Univ Technol Thonburi KMUTT, Fac Sci, Dept Math,SCL Fixed Point Lab 802, KMUTT Fixed Point Theory & Applicat Res Grp,KMUTT, 126 Pracha Uthit Rd, Bangkok 10140, Thailand
[5] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[6] King Abdulaziz Univ, Coll Sci & Arts, Dept Math, POB 344, Rabigh 21911, Saudi Arabia
关键词
human immunodeficiency virus; fractional dynamics; Caputo-Fabrizio derivative; numerical scheme; solutions pathway;
D O I
10.3390/molecules26061806
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Human immunodeficiency virus (HIV) is a life life-threatening and serious infection caused by a virus that attacks CD4(+) T-cells, which fight against infections and make a person susceptible to other diseases. It is a global public health problem with no cure; therefore, it is highly important to study and understand the intricate phenomena of HIV. In this article, we focus on the numerical study of the path-tracking damped oscillatory behavior of a model for the HIV infection of CD4(+) T-cells. We formulate fractional dynamics of HIV with a source term for the supply of new CD4(+) T-cells depending on the viral load via the Caputo-Fabrizio derivative. In the formulation of fractional HIV dynamics, we replaced the constant source term for the supply of new CD4(+) T-cells from the thymus with a variable source term depending on the concentration of the viral load, and introduced a term that describes the incidence of the HIV infection of CD4(+) T-cells. We present a novel numerical scheme for fractional view analysis of the proposed model to highlight the solution pathway of HIV. We inspect the periodic and chaotic behavior of HIV for the given values of input factors using numerical simulations.
引用
收藏
页数:17
相关论文
共 37 条
[1]   Computational solutions of the HIV-1 infection of CD4+ T-cells fractional mathematical model that causes acquired immunodeficiency syndrome (AIDS) with the effect of antiviral drug therapy [J].
Abdel-Aty, Abdel-Haleem ;
Khater, Mostafa M. A. ;
Dutta, Hemen ;
Bouslimi, Jamel ;
Omri, M. .
CHAOS SOLITONS & FRACTALS, 2020, 139
[2]   Magnetohydrodynamic electroosmotic flow of Maxwell fluids with Caputo-Fabrizio derivatives through circular tubes [J].
Abdulhameed, M. ;
Vieru, D. ;
Roslan, R. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (10) :2503-2519
[3]   Longitudinal study reveals HIV-1-infected CD4+ T cell dynamics during long-term antiretroviral therapy [J].
Antar, Annukka A. R. ;
Jenike, Katharine M. ;
Jang, Sunyoung ;
Rigau, Danielle N. ;
Reeves, Daniel B. ;
Hoh, Rebecca ;
Krone, Melissa R. ;
Keruly, Jeanne C. ;
Moore, Richard D. ;
Schiffer, Joshua T. ;
Nonyane, Bareng A. S. ;
Hecht, Frederick M. ;
Deeks, Steven G. ;
Siliciano, Janet D. ;
Ho, Ya-Chi ;
Siliciano, Robert F. .
JOURNAL OF CLINICAL INVESTIGATION, 2020, 130 (07) :3543-3559
[4]   A second order accurate approximation for fractional derivatives with singular and non-singular kernel applied to a HIV model [J].
Arshad, Sadia ;
Defterli, Ozlem ;
Baleanu, Dumitru .
APPLIED MATHEMATICS AND COMPUTATION, 2020, 374
[5]   NEW NUMERICAL APPROACH FOR FRACTIONAL DIFFERENTIAL EQUATIONS [J].
Atangana, Abdon ;
Owolabi, Kolade M. .
MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2018, 13 (01)
[6]   On modelling of epidemic childhood diseases with the Caputo-Fabrizio derivative by using the Laplace Adomian decomposition method [J].
Baleanu, Dumitru ;
Aydogn, Seher Melike ;
Mohammadi, Hakimeh ;
Rezapour, Shahram .
ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (05) :3029-3039
[7]  
Baleanu D, 2020, ADV DIFFER EQU-NY, V2020, DOI 10.1186/s13662-020-02544-w
[8]   Stability Results for Two-Dimensional Systems of Fractional-Order Difference Equations [J].
Brandibur, Oana ;
Kaslik, Eva ;
Mozyrska, Dorota ;
Wyrwas, Malgorzata .
MATHEMATICS, 2020, 8 (10) :1-16
[9]   Mathematical analysis of HIV/AIDS infection model with Caputo-Fabrizio fractional derivative [J].
Bushnaq, Samia ;
Khan, Sajjad Ali ;
Shah, Kamal ;
Zaman, Gul .
COGENT MATHEMATICS & STATISTICS, 2018, 5 (01)
[10]  
Bushnaq S, 2018, J MATH ANAL, V9, P16