Adiabatic shear instability is not necessary for adhesion in cold spray

被引:266
作者
Hassani-Gangaraj, Mostafa [1 ]
Veysset, David [2 ]
Champagne, Victor K. [3 ]
Nelson, Keith A. [2 ,4 ]
Schuh, Christopher A. [1 ]
机构
[1] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[2] MIT, Inst Soldier Nanotechnol, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] US Army, Res Lab, Weap & Mat Res Directorate, Aberdeen Proving Ground, MD USA
[4] MIT, Dept Chem, Cambridge, MA 02139 USA
关键词
Cold spray; Impact; Bonding; Critical velocity; Jetting; GAS-DYNAMIC-SPRAY; BONDING MECHANISM; CRITICAL VELOCITY; FINITE-ELEMENT; COMPUTATIONAL METHODS; BIRD STRIKE; PARTICLE; IMPACT; DEPOSITION; ALUMINUM;
D O I
10.1016/j.actamat.2018.07.065
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
When metallic microparticles impact substrates at high enough velocity, they bond cohesively. It has been widely argued that this critical adhesion velocity is associated with the impact velocity required to induce adiabatic shear instability. Here, we argue that the large interfacial strain needed to achieve bonding does not necessarily require adiabatic shear instability to trigger. Instead, we suggest that the interaction of strong pressure waves with the free surface at the particle edges-a natural dynamic effect of a sufficiently rapid impact can cause hydrodynamic plasticity that effects bonding, without requiring shear instability. We proceed on this basis to postulate and confirm a proportionality between critical velocity and the bulk speed of sound, which supports the viewpoint that shear instability is not the mechanism of adhesion in cold spray. (C) 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:430 / 439
页数:10
相关论文
共 74 条
[1]   Cold gas dynamic spraying of a high temperature Al alloy [J].
Ajdelsztajn, L. ;
Zuniga, A. ;
Jodoin, B. ;
Lavernia, E. J. .
SURFACE & COATINGS TECHNOLOGY, 2006, 201 (06) :2109-2116
[2]  
Antoun T, 2006, Spall Fracture
[3]   Cold spraying - A materials perspective [J].
Assadi, H. ;
Kreye, H. ;
Gaertner, F. ;
Klassen, T. .
ACTA MATERIALIA, 2016, 116 :382-407
[4]   Bonding mechanism in cold gas spraying [J].
Assadi, H ;
Gärtner, F ;
Stoltenhoff, T ;
Kreye, H .
ACTA MATERIALIA, 2003, 51 (15) :4379-4394
[5]   General aspects of interface bonding in kinetic sprayed coatings [J].
Bae, Gyulyeol ;
Xiong, Yuming ;
Kumar, S. ;
Kang, Kicheol ;
Lee, Changhee .
ACTA MATERIALIA, 2008, 56 (17) :4858-4868
[6]   Correlation of particle impact conditions with bonding, nanocrystal formation and mechanical properties in kinetic sprayed nickel [J].
Bae, Gyuyeol ;
Jang, Jae-il ;
Lee, Changhee .
ACTA MATERIALIA, 2012, 60 (08) :3524-3535
[7]   Bonding features and associated mechanisms in kinetic sprayed titanium coatings [J].
Bae, Gyuyeol ;
Kumar, S. ;
Yoon, Sanghoon ;
Kang, Kicheol ;
Na, Hyuntaek ;
Kim, Hyung-Jun ;
Lee, Changhee .
ACTA MATERIALIA, 2009, 57 (19) :5654-5666
[8]   COMPUTATIONAL METHODS IN LAGRANGIAN AND EULERIAN HYDROCODES [J].
BENSON, DJ .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1992, 99 (2-3) :235-394
[9]  
BENSON DJ, 1995, COMPUT MECH, V15, P558, DOI 10.1007/s004660050041
[10]   Localisation of deformation in cold gas dynamic spraying [J].
Bielousova, O. ;
Kocimski, J. ;
Maev, R. Gr. ;
Smurov, I. ;
Scharff, W. ;
Leshchynsky, V. .
SURFACE ENGINEERING, 2016, 32 (09) :655-662