Direct measurement of the Kirkwood-Rihaczek distribution for the spatial properties of a coherent light beam

被引:8
作者
Bollen, Viktor [1 ]
Sua, Yong Meng [1 ]
Lee, Kim Fook [1 ]
机构
[1] Michigan Technol Univ, Dept Phys, Houghton, MI 49931 USA
来源
PHYSICAL REVIEW A | 2010年 / 81卷 / 06期
关键词
PHASE-SPACE; WIGNER DISTRIBUTION; SQUEEZED STATES; QUANTUM-STATE; TOMOGRAPHY; TIME;
D O I
10.1103/PhysRevA.81.063826
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a direct measurement of the Kirkwood-Rihaczek (KR) distribution for spatial properties of a coherent light beam in terms of position and momentum (angle) coordinates. We employ a two-local oscillator (LO) balanced heterodyne detection (BHD) to simultaneously extract the distribution of the transverse position and momentum of a light beam. The two-LO BHD can measure the KR distribution for any complex wave field (including quantum mechanical wave function) without applying tomography methods (inverse Radon transformation). The transformation of the KR distribution to the Wigner, Glauber-Sudarshan P, and Husimi or Q distributions in spatial coordinates are illustrated through experimental data. The KR distribution can provide the local information of a wave field, which is suitable for studying particle properties of a quantum system. Meanwhile, the Wigner function is suitable for studying wave properties such as interference, and hence provides nonlocal information of the wave field. The method developed here can be used for exploring the spatial quantum state for information processing and optical phase-space imaging for biomedical applications.
引用
收藏
页数:11
相关论文
共 55 条
[1]  
[Anonymous], 1973, Quantum Statistical Properties of Radiation
[2]   Testing quantum nonlocality in phase space [J].
Banaszek, K ;
Wódkiewicz, K .
PHYSICAL REVIEW LETTERS, 1999, 82 (10) :2009-2013
[3]  
Bastiaans M., 1997, Theory and Application in Signal Processing, P375
[4]   WIGNER DISTRIBUTION FUNCTION APPLIED TO OPTICAL SIGNALS AND SYSTEMS [J].
BASTIAANS, MJ .
OPTICS COMMUNICATIONS, 1978, 25 (01) :26-30
[5]  
BECK M, 1993, OPT LETT, V18, P2041, DOI 10.1364/OL.18.002041
[6]   Implementation of quantum search algorithm using classical Fourier optics [J].
Bhattacharya, N ;
van den Heuvell, HBV ;
Spreeuw, RJC .
PHYSICAL REVIEW LETTERS, 2002, 88 (13) :1379011-1379014
[7]   Factorization of numbers with the temporal talbot effect: Optical implementation by a sequence of shaped ultrashort pulses [J].
Bigourd, Damien ;
Chatel, Beatrice ;
Schleich, Wolfgang P. ;
Girard, Bertrand .
PHYSICAL REVIEW LETTERS, 2008, 100 (03)
[8]   Nonlocal quantum macroscopic superposition in a high-thermal low-purity state [J].
Brezinski, Mark E. ;
Liu, Bin .
PHYSICAL REVIEW A, 2008, 78 (06)
[9]   DENSITY OPERATORS AND QUASIPROBABILITY DISTRIBUTIONS [J].
CAHILL, KE ;
GLAUBER, RJ .
PHYSICAL REVIEW, 1969, 177 (5P1) :1882-+
[10]   Long-range saturation of spatial decoherence in wave-field transport in random multiple-scattering media [J].
Cheng, CC ;
Raymer, MG .
PHYSICAL REVIEW LETTERS, 1999, 82 (24) :4807-4810