"Sauna" Activation toward Intrinsic Lattice Deficiency in Carbon Nanotube Microspheres for High-Energy and Long-Lasting Lithium-Sulfur Batteries

被引:101
作者
Zhang, Yongguang [1 ,2 ]
Li, Gaoran [3 ]
Wang, Jiayi [2 ]
Luo, Dan [2 ]
Sun, Zhenghao [1 ]
Zhao, Yan [1 ]
Yu, Aiping [4 ]
Wang, Xin [2 ]
Chen, Zhongwei [4 ]
机构
[1] Hebei Univ Technol, Sch Mat Sci & Engn, State Key Lab Reliabil & Intelligence Elect Equip, Tianjin 300130, Peoples R China
[2] South China Normal Univ, South China Acad Adv Optoelect, Int Acad Optoelect Zhaoqing, Guangzhou 510006, Peoples R China
[3] Nanjing Univ Sci & Technol, Sch Mat Sci & Engn, Inst Optoelect & Nanomat, MIIT Key Lab Adv Display Mat & Devices, Nanjing 210094, Peoples R China
[4] Univ Waterloo, Dept Chem Engn, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
carbon defects; carbon nanotubes; electrochemical performance; Li– S batteries; water‐ steam etching; LI-S BATTERIES;
D O I
10.1002/aenm.202100497
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium-sulfur (Li-S) battery technology offers one of the most promising replacement strategies for conventional lithium-ion batteries, but for several serious obstacles remain, such as the notorious polysulfide shuttling and their sluggish reaction kinetics. In this work, it is demonstrated that these problems can be significantly ameliorated via intrinsic lattice defect engineering in carbon-based sulfur host materials. Specifically, porous carbon nanotube microspheres (ePCNTM) are developed through a scalable spray drying method, followed by a critical water-steam etching under high temperature. Such "sauna" activation constructs abundant intrinsic topological defects in the carbon lattice, endowing ePCNTM with enhanced sulfur adsorbability and catalytic activity in sulfur redox reactions. In addition, the interwoven and highly porous architecture renders favorable conductivity, homogeneous sulfur distribution, and massive host-guest interactive surfaces. As a result, the ePCNTM-based sulfur electrodes achieve excellent cyclability with an ultralow capacity attenuation rate of 0.046% per cycle upon 500 cycles, excellent rate capability up to 3 C, and decent areal capacity retention of 3.2 mAh cm(-2) after 50 cycles under raised high sulfur loading. Thus, this synergistic approach, combining composite nanostructuring and intrinsic defect engineering, yields highly competitive Li-S batteries, which is also expected to inform advanced material development in related energy fields.
引用
收藏
页数:9
相关论文
共 32 条
[1]   Metal-based nanostructured materials for advanced lithium-sulfur batteries [J].
Balach, Juan ;
Linnemann, Julia ;
Jaumann, Tony ;
Giebeler, Lars .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (46) :23127-23168
[2]   Lithium-Sulfur Batteries: Attaining the Critical Metrics [J].
Bhargav, Amruth ;
He, Jiarui ;
Gupta, Abhay ;
Manthiram, Arumugam .
JOULE, 2020, 4 (02) :285-291
[3]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/NMAT3191, 10.1038/nmat3191]
[4]   Defect engineering on carbon black for accelerated Li-S chemistry [J].
Cai, Wenlong ;
Song, Yingze ;
Fang, Yuting ;
Wang, Weiwei ;
Yu, Songlin ;
Ao, Huaisheng ;
Zhu, Yongchun ;
Qian, Yitai .
NANO RESEARCH, 2020, 13 (12) :3315-3320
[5]   The Dual-Play of 3D Conductive Scaffold Embedded with Co, N Codoped Hollow Polyhedra toward High-Performance Li-S Full Cell [J].
Cai, Wenlong ;
Li, Gaoran ;
Luo, Dan ;
Xiao, Guannan ;
Zhu, Shanshan ;
Zhao, Yingyue ;
Chen, Zhongwei ;
Zhu, Yongchun ;
Qian, Yitai .
ADVANCED ENERGY MATERIALS, 2018, 8 (34)
[6]  
Chen C., 2019, SMALL, V15
[7]   Assessment of acid and thermal oxidation treatments for removing sp2 bonded carbon from the surface of boron doped diamond [J].
Cobb, Samuel J. ;
Laidlaw, Fraser H. J. ;
West, Geoff ;
Wood, Georgia ;
Newton, Mark E. ;
Beanland, Richard ;
Macpherson, Julie V. .
CARBON, 2020, 167 :1-10
[8]   Cobalt in Nitrogen-Doped Graphene as Single-Atom Catalyst for High-Sulfur Content Lithium-Sulfur Batteries [J].
Du, Zhenzhen ;
Chen, Xingjia ;
Hu, Wei ;
Chuang, Chenghao ;
Xie, Shuai ;
Hu, Ajuan ;
Yan, Wensheng ;
Kong, Xianghua ;
Wu, Xiaojun ;
Ji, Hengxing ;
Wan, Li-Jun .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (09) :3977-3985
[9]   Ternary Hybrid Material for High-Performance Lithium-Sulfur Battery [J].
Fan, Qi ;
Liu, Wen ;
Weng, Zhe ;
Sun, Yueming ;
Wang, Hailiang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (40) :12946-12953
[10]   Recent Advances in Hollow Porous Carbon Materials for Lithium-Sulfur Batteries [J].
Fu, Ang ;
Wang, Chaozhi ;
Pei, Fei ;
Cui, Jingqin ;
Fang, Xiaoliang ;
Zheng, Nanfeng .
SMALL, 2019, 15 (10)