Spaceborne GNSS-R Wind Speed Retrieval Using Machine Learning Methods

被引:17
|
作者
Wang, Changyang [1 ,2 ]
Yu, Kegen [1 ,2 ]
Qu, Fangyu [3 ]
Bu, Jinwei [1 ,2 ]
Han, Shuai [1 ,2 ]
Zhang, Kefei [1 ,2 ]
机构
[1] China Univ Min & Technol, MNR Key Lab Land Environm & Disaster Monitoring, Xuzhou 221116, Jiangsu, Peoples R China
[2] China Univ Min & Technol, Sch Environm Sci & Spatial Informat, Xuzhou 221116, Jiangsu, Peoples R China
[3] Nankai Univ, Coll Comp Sci, Tianjin 300073, Peoples R China
基金
中国国家自然科学基金;
关键词
wind speed; Cyclone Global Navigation Satellite System (CYGNSS); regression model; machine learning; ARTIFICIAL NEURAL-NETWORKS; SUPPORT VECTOR MACHINES; OCEAN; MODEL; SCATTERING; SURFACE;
D O I
10.3390/rs14143507
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper focuses on sea surface wind speed estimation using L1B level v3.1 data of reflected GNSS signals from the Cyclone GNSS (CYGNSS) mission and European Centre for Medium-range Weather Forecast Reanalysis (ECMWF) wind speed data. Seven machine learning methods are applied for wind speed retrieval, i.e., Regression trees (Binary Tree (BT), Ensembles of Trees (ET), XGBoost (XGB), LightGBM (LGBM)), ANN (Artificial neural network), Stepwise Linear Regression (SLR), and Gaussian Support Vector Machine (GSVM), and a comparison of their performance is made. The wind speed is divided into two different ranges to study the suitability of the different algorithms. A total of 10 observation variables are considered as input parameters to study the importance of individual variables or combinations thereof. The results show that the LGBM model performs the best with an RMSE of 1.419 and a correlation coefficient of 0.849 in the low wind speed interval (0-15 m/s), while the ET model performs the best with an RMSE of 1.100 and a correlation coefficient of 0.767 in the high wind speed interval (15-30 m/s). The effects of the variables used in wind speed retrieval models are investigated using the XGBoost importance metric, showing that a number of variables play a very significant role in wind speed retrieval. It is expected that these results will provide a useful reference for the development of advanced wind speed retrieval algorithms in the future.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] MF-ANN: A Novel Artificial Neural Network-Based Method for Ocean Wind Speed Retrieval on Spaceborne GNSS-R Signal
    Xie, Heng
    Cheng, Xing
    He, Shanbao
    Li, Yujie
    Pang, Jingjing
    Li, Shuaishuai
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [32] Desert Roughness Retrieval Using CYGNSS GNSS-R Data
    Stilla, Donato
    Zribi, Mehrez
    Pierdicca, Nazzareno
    Baghdadi, Nicolas
    Huc, Mireille
    REMOTE SENSING, 2020, 12 (04)
  • [33] GNSS-R Soil Moisture Retrieval Based on a XGboost Machine Learning Aided Method: Performance and Validation
    Jia, Yan
    Jin, Shuanggen
    Savi, Patrizia
    Gao, Yun
    Tang, Jing
    Chen, Yixiang
    Li, Wenmei
    REMOTE SENSING, 2019, 11 (14)
  • [34] Information Fusion for Spaceborne GNSS-R Sea Surface Height Retrieval Using Modified Residual Multimodal Deep Learning Method
    Wang, Qiang
    Zheng, Wei
    Wu, Fan
    Zhu, Huizhong
    Xu, Aigong
    Shen, Yifan
    Zhao, Yelong
    REMOTE SENSING, 2023, 15 (06)
  • [35] Wind Speed Maping from the ISS Using GNSS-R? A Simulation Study
    Camps, A.
    Park, H.
    Alonso-Arroyo, A.
    2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 382 - 385
  • [36] Integrating spaceborne GNSS-R and SMOS for sea surface salinity retrieval using artificial neural network
    Li, Zheng
    Guo, Fei
    Zhang, Xiaohong
    Zhang, Zhiyu
    Zhu, Yifan
    Yang, Wentao
    Wu, Ziheng
    Yue, Liming
    GPS SOLUTIONS, 2024, 28 (04)
  • [37] Retracking considerations in spaceborne GNSS-R altimetry
    Park, Hyuk
    Camps, Adriano
    Valencia, Enric
    Rodriguez-Alvarez, Nereida
    Bosch-Lluis, Xavier
    Ramos-Perez, Isaac
    Carreno-Luengo, Hugo
    GPS SOLUTIONS, 2012, 16 (04) : 507 - 518
  • [38] Joint Retrieval of Sea Surface Rainfall Intensity, Wind Speed, and Wave Height Based on Spaceborne GNSS-R: A Case Study of the Oceans near China
    Bu, Jinwei
    Yu, Kegen
    Zhu, Feiyang
    Zuo, Xiaoqing
    Huang, Weimin
    REMOTE SENSING, 2023, 15 (11)
  • [39] Waveform-based spaceborne GNSS-R wind speed observation: Demonstration and analysis using UK TechDemoSat-1 data
    Wang, Feng
    Yang, Dongkai
    Zhang, Bo
    Li, Weiqiang
    ADVANCES IN SPACE RESEARCH, 2018, 61 (06) : 1573 - 1587
  • [40] FA-RDN: A Hybrid Neural Network on GNSS-R Sea Surface Wind Speed Retrieval
    Liu, Xiaoxu
    Bai, Weihua
    Xia, Junming
    Huang, Feixiong
    Yin, Cong
    Sun, Yueqiang
    Du, Qifei
    Meng, Xiangguang
    Liu, Congliang
    Hu, Peng
    Tan, Guangyuan
    REMOTE SENSING, 2021, 13 (23)