Spaceborne GNSS-R Wind Speed Retrieval Using Machine Learning Methods

被引:17
|
作者
Wang, Changyang [1 ,2 ]
Yu, Kegen [1 ,2 ]
Qu, Fangyu [3 ]
Bu, Jinwei [1 ,2 ]
Han, Shuai [1 ,2 ]
Zhang, Kefei [1 ,2 ]
机构
[1] China Univ Min & Technol, MNR Key Lab Land Environm & Disaster Monitoring, Xuzhou 221116, Jiangsu, Peoples R China
[2] China Univ Min & Technol, Sch Environm Sci & Spatial Informat, Xuzhou 221116, Jiangsu, Peoples R China
[3] Nankai Univ, Coll Comp Sci, Tianjin 300073, Peoples R China
基金
中国国家自然科学基金;
关键词
wind speed; Cyclone Global Navigation Satellite System (CYGNSS); regression model; machine learning; ARTIFICIAL NEURAL-NETWORKS; SUPPORT VECTOR MACHINES; OCEAN; MODEL; SCATTERING; SURFACE;
D O I
10.3390/rs14143507
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper focuses on sea surface wind speed estimation using L1B level v3.1 data of reflected GNSS signals from the Cyclone GNSS (CYGNSS) mission and European Centre for Medium-range Weather Forecast Reanalysis (ECMWF) wind speed data. Seven machine learning methods are applied for wind speed retrieval, i.e., Regression trees (Binary Tree (BT), Ensembles of Trees (ET), XGBoost (XGB), LightGBM (LGBM)), ANN (Artificial neural network), Stepwise Linear Regression (SLR), and Gaussian Support Vector Machine (GSVM), and a comparison of their performance is made. The wind speed is divided into two different ranges to study the suitability of the different algorithms. A total of 10 observation variables are considered as input parameters to study the importance of individual variables or combinations thereof. The results show that the LGBM model performs the best with an RMSE of 1.419 and a correlation coefficient of 0.849 in the low wind speed interval (0-15 m/s), while the ET model performs the best with an RMSE of 1.100 and a correlation coefficient of 0.767 in the high wind speed interval (15-30 m/s). The effects of the variables used in wind speed retrieval models are investigated using the XGBoost importance metric, showing that a number of variables play a very significant role in wind speed retrieval. It is expected that these results will provide a useful reference for the development of advanced wind speed retrieval algorithms in the future.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] A GNSS-R Geophysical Model Function: Machine Learning for Wind Speed Retrievals
    Asgarimehr, Milad
    Zhelavskaya, Irina
    Foti, Giuseppe
    Reich, Sebastian
    Wickert, Jens
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (08) : 1333 - 1337
  • [2] Wind Direction Retrieval Using Spaceborne GNSS-R in Nonspecular Geometry
    Zhang, Guodong
    Yang, Dongkai
    Yu, Yongqing
    Wang, Feng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 649 - 658
  • [3] A MACHINE LEARNING FRAMEWORK FOR REAL DATA GNSS-R WIND SPEED RETRIEVAL
    Liu, Yunxiang
    Wang, Jun
    Collett, Ian
    Morton, Y. Jade
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 8707 - 8710
  • [4] Improved Ocean Wind Speed Retrieval Using GNSS-R, Stare Processing, and Machine Learning
    Anderson, Sophie G.
    Liu, Yunxiang
    Collett, Ian
    Morton, Y. Jade
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 6775 - 6778
  • [5] Wind Speed Retrieval Method for Shipborne GNSS-R
    Qin, Lingyu
    Li, Ying
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [6] Spaceborne GNSS-R for Sea Ice Classification Using Machine Learning Classifiers
    Zhu, Yongchao
    Tao, Tingye
    Li, Jiangyang
    Yu, Kegen
    Wang, Lei
    Qu, Xiaochuan
    Li, Shuiping
    Semmling, Maximilian
    Wickert, Jens
    REMOTE SENSING, 2021, 13 (22)
  • [7] Application of Neural Network to GNSS-R Wind Speed Retrieval
    Liu, Yunxiang
    Collett, Ian
    Morton, Y. Jade
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (12): : 9756 - 9766
  • [8] Spaceborne GNSS-R Minimum Variance Wind Speed Estimator
    Clarizia, Maria Paola
    Ruf, Christopher S.
    Jales, Philip
    Gommenginger, Christine
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (11): : 6829 - 6843
  • [9] Wind speed retrieval using GNSS-R technique with geographic partitioning
    Li, Zheng
    Guo, Fei
    Chen, Fade
    Zhang, Zhiyu
    Zhang, Xiaohong
    SATELLITE NAVIGATION, 2023, 4 (01):
  • [10] Stare Processing Improves GNSS-R, Machine Learning-Based Ocean Wind Speed Retrieval
    Anderson, Sophie G.
    Liu, Yunxiang
    Collett, Ian
    Morton, Y. Jade
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 4080 - 4083