Post-quantum Hermite-Hadamard type inequalities for interval-valued convex functions

被引:23
作者
Ali, Muhammad Aamir [1 ]
Budak, Huseyin [2 ]
Murtaza, Ghulam [3 ]
Chu, Yu-Ming [4 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Peoples R China
[2] Duzce Univ, Fac Sci & Arts, Dept Math, Duzce, Turkey
[3] Univ Management & Technol, Dept Math SSC, C-2, Lahore, Pakistan
[4] Huzhou Univ, Dept Math, Huzhou 313000, Peoples R China
关键词
Hermite-Hadamard inequality; (p; q)-integral; Quantum calculus; Interval-valued calculus; Interval-valued convex functions; INTEGRAL-INEQUALITIES; CALCULUS;
D O I
10.1186/s13660-021-02619-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this research, we introduce the notions of (p, q)-derivative and integral for interval-valued functions and discuss their fundamental properties. After that, we prove some new inequalities of Hermite-Hadamard type for interval-valued convex functions employing the newly defined integral and derivative. Moreover, we find the estimates for the newly proved inequalities of Hermite-Hadamard type. It is also shown that the results proved in this study are the generalization of some already proved research in the field of Hermite-Hadamard inequalities.
引用
收藏
页数:18
相关论文
共 35 条
[21]   Valency-Based Topological Properties of Linear Hexagonal Chain and Hammer-Like Benzenoid [J].
Li, Yi-Xia ;
Rauf, Abdul ;
Naeem, Muhammad ;
Binyamin, Muhammad Ahsan ;
Aslam, Adnan .
COMPLEXITY, 2021, 2021
[22]   Fractional simulation for Darcy-Forchheimer hybrid nanoliquid flow with partial slip over a spinning disk [J].
Li, Yi-Xia ;
Muhammad, Taseer ;
Bilal, Muhammad ;
Khan, Muhammad Altaf ;
Ahmadian, Ali ;
Pansera, Bruno A. .
ALEXANDRIA ENGINEERING JOURNAL, 2021, 60 (05) :4787-4796
[23]   SOME QUANTUM ESTIMATES OF HERMITE-HADAMARD INEQUALITIES FOR CONVEX FUNCTIONS [J].
Liu, Wenjun ;
Zhuang, Hefeng .
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2017, 7 (02) :501-522
[24]   Iq-Calculus and Iq-Hermite-Hadamard inequalities for interval-valued functions [J].
Lou, Tianyi ;
Ye, Guoju ;
Zhao, Dafang ;
Liu, Wei .
ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
[25]   Fractional calculus for interval-valued functions [J].
Lupulescu, Vasile .
FUZZY SETS AND SYSTEMS, 2015, 265 :63-85
[26]  
Markov S, 2000, J CONVEX ANAL, V7, P129
[27]   CALCULUS FOR INTERVAL FUNCTIONS OF A REAL VARIABLE [J].
MARKOV, S .
COMPUTING, 1979, 22 (04) :325-337
[28]  
Moore R. E., 1966, Interval analysis
[29]   QUANTUM OSTROWSKI INEQUALITIES FOR q-DIFFERENTIABLE CONVEX FUNCTIONS [J].
Noor, Muhammad Aslam ;
Awan, Muhammad Uzair ;
Noor, Khalida Inayat .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2016, 10 (04) :1013-1018
[30]   Some quantum integral inequalities via preinvex functions [J].
Noor, Muhammad Aslam ;
Noor, Khalida Inayat ;
Awan, Muhammad Uzair .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 269 :242-251