Post-quantum Hermite-Hadamard type inequalities for interval-valued convex functions

被引:20
作者
Ali, Muhammad Aamir [1 ]
Budak, Huseyin [2 ]
Murtaza, Ghulam [3 ]
Chu, Yu-Ming [4 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Peoples R China
[2] Duzce Univ, Fac Sci & Arts, Dept Math, Duzce, Turkey
[3] Univ Management & Technol, Dept Math SSC, C-2, Lahore, Pakistan
[4] Huzhou Univ, Dept Math, Huzhou 313000, Peoples R China
关键词
Hermite-Hadamard inequality; (p; q)-integral; Quantum calculus; Interval-valued calculus; Interval-valued convex functions; INTEGRAL-INEQUALITIES; CALCULUS;
D O I
10.1186/s13660-021-02619-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this research, we introduce the notions of (p, q)-derivative and integral for interval-valued functions and discuss their fundamental properties. After that, we prove some new inequalities of Hermite-Hadamard type for interval-valued convex functions employing the newly defined integral and derivative. Moreover, we find the estimates for the newly proved inequalities of Hermite-Hadamard type. It is also shown that the results proved in this study are the generalization of some already proved research in the field of Hermite-Hadamard inequalities.
引用
收藏
页数:18
相关论文
共 35 条
[1]  
AGARWAL RP, 1953, CR HEBD ACAD SCI, V236, P2031
[2]   Magnetoelectronic properties of ferromagnetic compounds Rb2TaZ6(Z = Cl, Br) for possible spintronic applications [J].
Ali, Malak Azmat ;
Murtaza, G. ;
Khan, Afzal ;
Algrafy, Eman ;
Mahmood, Asif ;
Ramay, Shahid M. .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2020, 120 (19)
[3]  
Ali MA, 2021, ADV DIFFER EQU-NY, V2021, DOI 10.1186/s13662-020-03163-1
[4]   Some new Simpson's type inequalities for coordinated convex functions in quantum calculus [J].
Ali, Muhammad Aamir ;
Budak, Huseyin ;
Zhang, Zhiyue ;
Yildirim, Huseyin .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (06) :4515-4540
[5]  
Alp N., 2020, QUANTUM HERMIT UNPUB
[6]   q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions [J].
Alp, Necmettin ;
Sarikaya, Mehmet Zeki ;
Kunt, Mehmet ;
Iscan, Imdat .
JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2018, 30 (02) :193-203
[7]   SOME FRACTIONAL Q-INTEGRALS AND Q-DERIVATIVES [J].
ALSALAM, WA .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1966, 15 :135-&
[8]  
Aubin J-P, 2012, DIFFERENTIAL INCLUSI
[9]   On q-Hermite-Hadamard inequalities for general convex functions [J].
Bermudo, S. ;
Korus, P. ;
Napoles Valdes, J. E. .
ACTA MATHEMATICA HUNGARICA, 2020, 162 (01) :364-374
[10]   New Quantum Hermite-Hadamard Inequalities Utilizing Harmonic Convexity of the Functions [J].
Bin-Mohsin, Bandar ;
Awan, Muhammad Uzair ;
Noor, Muhammad Aslam ;
Riahi, Latifa ;
Noor, Khalida Inayat ;
Almutairi, Bander .
IEEE ACCESS, 2019, 7 :20479-20483