The complexity of McNaughton functions of one variable

被引:17
作者
Aguzzoli, S [1 ]
机构
[1] Univ Siena, Dept Math, I-53100 Siena, Italy
关键词
D O I
10.1006/aama.1998.0581
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
McNaughton functions play the same role in Lukasiewicz logics as Boolean functions do in classical logic. Formulas in one variable are an important ingredient of automated deduction in many-valued logics: the aim of this paper is to establish some results on the complexity of the problems of function representation and formula minimization. (C) 1998 Academic Press.
引用
收藏
页码:58 / 77
页数:20
相关论文
共 11 条
[1]   AN ALGORITHMIC DESINGULARIZATION OF 3-DIMENSIONAL TORIC VARIETIES [J].
AGUZZOLI, S ;
MUNDICI, D .
TOHOKU MATHEMATICAL JOURNAL, 1994, 46 (04) :557-572
[2]  
[Anonymous], 1958, T AM MATH SOC
[3]  
[Anonymous], 1983, LOGIC SEMANTICS META
[4]  
Lukasiewicz J., 1930, CR HEBD ACAD SCI, P23
[5]  
McNaughton R., 1951, The Journal of Symbolic Logic, V16, P1
[6]   SATISFIABILITY IN MANY-VALUED SENTENTIAL LOGIC IS NP-COMPLETE [J].
MUNDICI, D .
THEORETICAL COMPUTER SCIENCE, 1987, 52 (1-2) :145-153
[7]  
MUNDICI D, 1992, LECT NOTES COMPUT SC, V626, P272, DOI 10.1007/BFb0023773
[8]   A CONSTRUCTIVE PROOF OF MCNAUGHTONS THEOREM IN INFINITE-VALUED LOGIC [J].
MUNDICI, D .
JOURNAL OF SYMBOLIC LOGIC, 1994, 59 (02) :596-602
[9]  
MUNDICI D, 1996, P LOG C 1993 KEEL EN, P401
[10]  
MUNDICI D, IN PRESS THEORET COM