The protective effects of Mai-Luo-Ning injection against LPS-induced acute lung injury via the TLR4/NF-?B signalling pathway

被引:6
|
作者
Miao, Junqiu [1 ]
Shen, Jing [1 ]
Yan, Chaoqun [1 ]
Ren, Jinhong [2 ]
Liu, Haixin [2 ]
Qiao, Yuanbiao [2 ]
Li, Qingshan [1 ,2 ]
机构
[1] Shanxi Med Univ, Sch Pharmaceut Sci, Key Lab Cellular Physiol, Taiyuan 030001, Peoples R China
[2] Shanxi Univ Chinese Med, Shanxi Key Lab Innovat Drug Treatment Serious Dis, Jinzhong 030619, Peoples R China
关键词
Mai-Luo-Ning injection; Acute lung injury; Lipopolysaccharide; Network pharmacology; TLR4; NF-?B signalling pathway; SYSTEMS PHARMACOLOGY;
D O I
10.1016/j.phymed.2022.154290
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background: Acute lung injury (ALI) is a severe inflammatory disorder associated with high morbidity and mortality rates. Various therapeutic strategies for ALI have been proposed over the last few decades; however, the treatment options remain limited. Mai-Luo-Ning injection (MLN), a traditional Chinese medical formulation, has been extensively used for the treatment of respiratory diseases. Nevertheless, the effects of MLN on ALI remain unclear. Purpose: This study aimed to investigate the protective and therapeutic effects of MLN on lipopolysaccharideinduced ALI mouse models and RAW 264.7 cells, and further explore the underlying mechanism of these effects. Methods: The therapeutic activity of MLN was evaluated using an in vivo ALI model and an in vitro model of RAW 264.7 macrophages. UHPLC-ESI-Q-TOF-MS/MS was used to investigate the chemical constituents of the MLN. The material basis and potential protective mechanism of MLN were analyzed using network pharmacology. The roles of MLN in inhibiting the Toll-like receptor 4 (TLR4)/ nuclear factor kappa B (NF-kappa B) signalling pathway were investigated via western blotting, real-time polymerase chain reaction, enzyme-linked immunosorbent assay, and immunofluorescence staining. Results: In vivo experiments demonstrated that MLN ameliorated LPS-induced histological changes in lung tissues and reduced lung wet/dry weight ratio, total protein concentration in the bronchoalveolar lavage fluid and myeloperoxidase activity. Furthermore, MLN downregulated the in vivo and in vitro expression of proinflammatory cytokines such as tumour necrosis factor-alpha, interleukin-6, and interleukin-1 beta. Network pharmacology analysis revealed that MLN could act synergistically through multiple targets and pathways and exert a protective effect, possibly through inhibiting TLR4/ NF-kappa B signalling pathways. Western blotting and immunofluorescence experiments further confirmed that MLN could regulate the expression of TLR4, MyD88, phospho-I kappa B-alpha, and phospho-NF-kappa B p65 in the TLR4/NF-kappa B signalling pathway and decrease the translocation of phospho-NF-kappa B p65 into the nucleus. Conclusion: This study suggests that MLN has a potential protective effect against LPS-induced ALI, which might be associated with the inhibition of the TLR4/NF-kappa B signalling pathway. Therefore, MLN is worthy of further investigation as a potential candidate for the treatment of ALI in the future.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Esculin Inhibits the Inflammation of LPS-Induced Acute Lung Injury in Mice Via Regulation of TLR/NF-κB Pathways
    Zhang Tianzhu
    Wang Shumin
    Inflammation, 2015, 38 : 1529 - 1536
  • [32] EXAMINATION OF THE PROTECTIVE EFFECT OF 6-SHOGAOL AGAINST LPS-INDUCED ACUTE LUNG INJURY IN MICE VIA NF-κB ATTENUATION
    Wang, Jing-Chao
    Zhou, Li-Hua
    Zhao, Hai-Jin
    Cai, Shao-Xi
    ARCHIVES OF BIOLOGICAL SCIENCES, 2016, 68 (03) : 633 - 639
  • [33] Esculin Inhibits the Inflammation of LPS-Induced Acute Lung Injury in Mice Via Regulation of TLR/NF-κB Pathways
    Zhang Tianzhu
    Wang Shumin
    INFLAMMATION, 2015, 38 (04) : 1529 - 1536
  • [34] ACE2 exhibits protective effects against LPS-induced acute lung injury in mice by inhibiting the LPS-TLR4 pathway
    Ye, Rensong
    Liu, Zhenwei
    EXPERIMENTAL AND MOLECULAR PATHOLOGY, 2020, 113
  • [35] Polygala tenuifolia willd. Extract alleviates LPS-induced acute lung injury in rats via TLR4/NF-κB pathway and NLRP3 inflammasome suppression
    Guo, Shuyun
    Zhang, Jianguang
    Zhang, Qian
    Xu, Shuang
    Liu, Yuezhen
    Ma, Shangzhi
    Hu, Xiaodi
    Liu, Yanju
    Zhang, Xiuqiao
    Jiang, Ruixue
    Zhang, Zhifeng
    Zhang, Zhihua
    Zhou, Zhongshi
    Wen, Li
    PHYTOMEDICINE, 2024, 132
  • [36] Danshensu methyl ester attenuated LPS-induced acute lung injury by inhibiting TLR4/NF-xB pathway
    Han, Xuejia
    Ding, Wensi
    Qu, Guiwu
    Li, Youjie
    Wang, Pingyu
    Yu, Jiahui
    Liu, Mingyue
    Chen, Xiulan
    Xie, Shuyang
    Feng, Jiankai
    Xu, Sen
    RESPIRATORY PHYSIOLOGY & NEUROBIOLOGY, 2024, 322
  • [37] Effect of gut microbiota on LPS-induced acute lung injury by regulating the TLR4/NF-kB signaling pathway
    Tang, Jia
    Xu, Lingqi
    Zeng, Yiwen
    Gong, Fang
    INTERNATIONAL IMMUNOPHARMACOLOGY, 2021, 91
  • [38] Qingfei Huoxue Decoction and Its Active Component Narirutin Alleviate LPS-Induced Acute Lung Injury by Regulating TLR4/NF-κB κ B Pathway Mediated Inflammation
    Wang, Yule
    Li, Bei
    Zhang, Yingjuan
    Lu, Ruiling
    Wang, Qianzhuo
    Gao, Yue
    JOURNAL OF INFLAMMATION RESEARCH, 2024, 17 : 7503 - 7520
  • [39] The Defensive Action of LYRM03 on LPS-Induced Acute Lung Injury by NF-κB/TLR4/NLRP3 Signals
    Wang, Bin
    Wang, Jiaoyue
    Lu, Daopeng
    Qi, Na
    Liu, Qin
    JOURNAL OF INVESTIGATIVE SURGERY, 2021, 34 (03) : 284 - 296
  • [40] Penehyclidine hydrochloride attenuates LPS-induced acute lung injury involvement of NF-κB pathway
    Shen, Weifeng
    Gan, Jianxin
    Xu, Shaowen
    Jiang, Guanyu
    Wu, Honghai
    PHARMACOLOGICAL RESEARCH, 2009, 60 (04) : 296 - 302