The protective effects of Mai-Luo-Ning injection against LPS-induced acute lung injury via the TLR4/NF-?B signalling pathway

被引:6
|
作者
Miao, Junqiu [1 ]
Shen, Jing [1 ]
Yan, Chaoqun [1 ]
Ren, Jinhong [2 ]
Liu, Haixin [2 ]
Qiao, Yuanbiao [2 ]
Li, Qingshan [1 ,2 ]
机构
[1] Shanxi Med Univ, Sch Pharmaceut Sci, Key Lab Cellular Physiol, Taiyuan 030001, Peoples R China
[2] Shanxi Univ Chinese Med, Shanxi Key Lab Innovat Drug Treatment Serious Dis, Jinzhong 030619, Peoples R China
关键词
Mai-Luo-Ning injection; Acute lung injury; Lipopolysaccharide; Network pharmacology; TLR4; NF-?B signalling pathway; SYSTEMS PHARMACOLOGY;
D O I
10.1016/j.phymed.2022.154290
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background: Acute lung injury (ALI) is a severe inflammatory disorder associated with high morbidity and mortality rates. Various therapeutic strategies for ALI have been proposed over the last few decades; however, the treatment options remain limited. Mai-Luo-Ning injection (MLN), a traditional Chinese medical formulation, has been extensively used for the treatment of respiratory diseases. Nevertheless, the effects of MLN on ALI remain unclear. Purpose: This study aimed to investigate the protective and therapeutic effects of MLN on lipopolysaccharideinduced ALI mouse models and RAW 264.7 cells, and further explore the underlying mechanism of these effects. Methods: The therapeutic activity of MLN was evaluated using an in vivo ALI model and an in vitro model of RAW 264.7 macrophages. UHPLC-ESI-Q-TOF-MS/MS was used to investigate the chemical constituents of the MLN. The material basis and potential protective mechanism of MLN were analyzed using network pharmacology. The roles of MLN in inhibiting the Toll-like receptor 4 (TLR4)/ nuclear factor kappa B (NF-kappa B) signalling pathway were investigated via western blotting, real-time polymerase chain reaction, enzyme-linked immunosorbent assay, and immunofluorescence staining. Results: In vivo experiments demonstrated that MLN ameliorated LPS-induced histological changes in lung tissues and reduced lung wet/dry weight ratio, total protein concentration in the bronchoalveolar lavage fluid and myeloperoxidase activity. Furthermore, MLN downregulated the in vivo and in vitro expression of proinflammatory cytokines such as tumour necrosis factor-alpha, interleukin-6, and interleukin-1 beta. Network pharmacology analysis revealed that MLN could act synergistically through multiple targets and pathways and exert a protective effect, possibly through inhibiting TLR4/ NF-kappa B signalling pathways. Western blotting and immunofluorescence experiments further confirmed that MLN could regulate the expression of TLR4, MyD88, phospho-I kappa B-alpha, and phospho-NF-kappa B p65 in the TLR4/NF-kappa B signalling pathway and decrease the translocation of phospho-NF-kappa B p65 into the nucleus. Conclusion: This study suggests that MLN has a potential protective effect against LPS-induced ALI, which might be associated with the inhibition of the TLR4/NF-kappa B signalling pathway. Therefore, MLN is worthy of further investigation as a potential candidate for the treatment of ALI in the future.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Oroxylin-A Rescues LPS-Induced Acute Lung Injury via Regulation of NF-κB Signaling Pathway in Rodents
    Tseng, Tzu-Ling
    Chen, Mei-Fang
    Tsai, Ming-Jen
    Hsu, Yung-Hsiang
    Chen, Chin-Piao
    Lee, Tony J. F.
    PLOS ONE, 2012, 7 (10):
  • [32] MicroRNA-27a alleviates LPS-induced acute lung injury in mice via inhibiting inFLammation and apoptosis through modulating TLR4/MyD88/NF-κB pathway
    Ju, MinJie
    Liu, BoFei
    He, HongYu
    Gu, ZhunYong
    Liu, YiMei
    Su, Ying
    Zhu, DuMing
    Cang, Jing
    Luo, Zhe
    CELL CYCLE, 2018, 17 (16) : 2001 - 2018
  • [33] Tacrolimus alleviates LPS-induced AKI by inhibiting TLR4/MyD88/NF-κB signalling in mice
    Hu, Xueqing
    Zhou, Wenqian
    Wu, Shun
    Wang, Rui
    Luan, Zhiyong
    Geng, Xin
    Xu, Na
    Zhang, Zhaoyong
    Ruan, Zhenmin
    Wang, Zenghui
    Li, Furong
    Yu, Chen
    Ren, Hongqi
    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2022, 26 (02) : 507 - 514
  • [34] Phloretin attenuates LPS-induced acute lung injury in mice via modulation of the NF-κB and MAPK pathways
    Huang, Wen-Chung
    Lai, Ching-Long
    Liang, Yuan-Ting
    Hung, Hui-Chih
    Liu, Hui-Chia
    Liou, Chian-Jiun
    INTERNATIONAL IMMUNOPHARMACOLOGY, 2016, 40 : 98 - 105
  • [35] Oleocanthal alleviated lipopolysaccharide-induced acute lung injury in chickens by inhibiting TLR4/NF-κB pathway activation
    Miao, Fujun
    Shan, Chunlan
    Geng, Shuxiang
    Ning, Delu
    POULTRY SCIENCE, 2023, 102 (03)
  • [36] Protective effect of pteryxin on LPS-induced acute lung injury via modulating MAPK/NF-κB pathway and NLRP3 inflammasome activation
    Xuan, Tian-qi
    Gong, Guohua
    Du, Huanhuan
    Liu, Chunyan
    Wu, Yun
    Bao, Guilan
    Ma, Qianqian
    Zhen, Dong
    JOURNAL OF ETHNOPHARMACOLOGY, 2022, 286
  • [37] Aqueous extract of Aconitum carmichaelii Debeaux attenuates sepsis-induced acute lung injury via regulation of TLR4/NF-ΚB pathway
    You, Qinghai
    Wang, Jinmei
    Jiang, Lijuan
    Chang, Yuanmin
    Li, Wenmei
    TROPICAL JOURNAL OF PHARMACEUTICAL RESEARCH, 2020, 19 (03) : 533 - 539
  • [38] ERLOTINIB PROTECTS LPS-INDUCED ACUTE LUNG INJURY IN MICE BY INHIBITING EGFR/TLR4 SIGNALING PATHWAY
    Tao, Huan
    Li, Na
    Zhang, Zhao
    Mu, Honglan
    Meng, Chen
    Xia, Huimin
    Fu, Lisha
    Xu, Younian
    Zhang, Shihai
    SHOCK, 2019, 51 (01): : 131 - 138
  • [39] P38MAPK inhibition attenuates LPS-induced acute lung injury involvement of NF-κB pathway
    Liu, Su
    Feng, Guang
    Wang, Guang-lei
    Liu, Gong-jian
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2008, 584 (01) : 159 - 165
  • [40] Protective effects of organic acid component from Taraxacum mongolicum Hand.-Mazz. against LPS-induced inflammation: Regulating the TLR4/IKK/NF-κB signal pathway
    Yang, Nan
    Dong, Zibo
    Tian, Gang
    Zhu, Maomao
    Li, Chao
    Bu, Weiquan
    Chen, Juan
    Hou, Xuefeng
    Liu, Ying
    Wang, Gang
    Jia, Xiaobin
    Di, Liuqing
    Feng, Liang
    JOURNAL OF ETHNOPHARMACOLOGY, 2016, 194 : 395 - 402