Approximation of SDEs by Population-Size-Dependent Galton-Watson Processes

被引:1
作者
Zaehle, Henryk [1 ]
机构
[1] Tech Univ Dortmund, Fak Math, D-44227 Dortmund, Germany
关键词
Cox-Ingersoll-Ross model; Doob-Meyer decomposition; Galton-Watson process; Martingale problem; Population-size-dependent branching; Stochastic differential equation; Weak convergence; BRANCHING-PROCESSES; LIMIT;
D O I
10.1080/07362990903136496
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A certain class of stochastic differential equations, containing the Cox-Ingersoll-Ross model and the geometric Brownian motion, is considered. The corresponding solutions are approximated weakly by discrete-time population-size-dependent Galton-Watson processes with immigration. The long-time behavior of the limiting processes is also investigated.
引用
收藏
页码:377 / 388
页数:12
相关论文
共 28 条
[1]  
[Anonymous], 1951, P 2 BERK S MATH STAT
[2]  
[Anonymous], 2002, LIMIT THEOREMS STOCH
[3]  
[Anonymous], 2007, CLASSICS MATH
[4]  
[Anonymous], 1972, BRANCHING PROCESSES
[5]  
Asmussen S, 1983, Branching processes
[6]   DIFFUSION-APPROXIMATION OF THE 2-TYPE GALTON-WATSON PROCESS WITH MEAN MATRIX CLOSE TO THE IDENTITY [J].
BUCKHOLTZ, PG ;
WASAN, MT .
JOURNAL OF MULTIVARIATE ANALYSIS, 1982, 12 (04) :493-507
[7]  
Cherny A. S., 2005, Lecture Notes in Mathematics, V1858
[8]   A THEORY OF THE TERM STRUCTURE OF INTEREST-RATES [J].
COX, JC ;
INGERSOLL, JE ;
ROSS, SA .
ECONOMETRICA, 1985, 53 (02) :385-407
[9]  
DYAKONOVA EE, 1999, J MATH SCI, V93, P511
[10]  
Ethier S. N., 2005, WILEY SERIES PROBABI