Pullback attractors of nonautonomous and stochastic multivalued dynamical systems

被引:148
作者
Caraballo, T
Langa, JA
Melnik, VS
Valero, J
机构
[1] Univ Seville, Dept Ecuac Diferenciales & Anal Numer, E-41080 Seville, Spain
[2] Inst Appl Syst Anal, UA-252056 Kiev, Ukraine
[3] Univ Cardenal Herrera CEU, Alicante 03203, Spain
来源
SET-VALUED ANALYSIS | 2003年 / 11卷 / 02期
关键词
attractor; asymptotic behaviour; differential inclusion; reaction-diffusion equation; nonautonomous dynamical system;
D O I
10.1023/A:1022902802385
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the existence of pullback global attractors for multivalued processes generated by differential inclusions. First, we define multivalued dynamical processes, prove abstract results on the existence of omega-limit sets and global attractors, and study their topological properties (compactness, connectedness). Further, we apply the abstract results to nonautonomous differential inclusions of the reaction-diffusion type in which the forcing term can grow polynomially in time, and to stochastic differential inclusions as well.
引用
收藏
页码:153 / 201
页数:49
相关论文
共 23 条
[1]  
[Anonymous], ABSTR APPL ANAL
[2]  
Aubin J. P., 1990, Set-valued analysis, DOI 10.1007/978-0-8176-4848-0
[3]  
Barbu V., 1976, Nonlinear Semigroups and Differential Equations in Banach Spaces
[4]  
BORISOVICH AV, 1986, INTRO THEORY MULTIVA
[5]   Global attractors for multivalued random dynamical systems [J].
Caraballo, T ;
Langa, JA ;
Valero, J .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 48 (06) :805-829
[6]   Global attractors for multivalued random dynamical systems generated by random differential inclusions with multiplicative noise [J].
Caraballo, T ;
Langa, JA ;
Valero, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 260 (02) :602-622
[7]   Global attractors for multivalued random semiflows generated by random differential inclusions with additive noise [J].
Caraballo, T ;
Langa, JA ;
Valero, J .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 332 (02) :131-136
[8]  
CHEPYZHOV VV, 1994, J MATH PURE APPL, V73, P279
[9]   Random attractors [J].
Crauel H. ;
Debussche A. ;
Flandoli F. .
Journal of Dynamics and Differential Equations, 1997, 9 (2) :307-341
[10]   ATTRACTORS FOR RANDOM DYNAMICAL-SYSTEMS [J].
CRAUEL, H ;
FLANDOLI, F .
PROBABILITY THEORY AND RELATED FIELDS, 1994, 100 (03) :365-393