Orientation-Aware Vehicle Detection in Aerial Images via an Anchor-Free Object Detection Approach

被引:48
|
作者
Shi, Furong [1 ]
Zhang, Tong [1 ]
Zhang, Tao [2 ]
机构
[1] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Peoples R China
[2] Tianjin Inst Geotech Invest Surveying, Tianjin 300191, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2021年 / 59卷 / 06期
基金
中国国家自然科学基金;
关键词
Vehicle detection; Feature extraction; Detectors; Object detection; Task analysis; Proposals; Remote sensing; Anchor-free; convolutional neural network (CNN); multitask learning; orientation prediction; vehicle detection;
D O I
10.1109/TGRS.2020.3011418
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Vehicle detection in aerial images is an important and challenging task in the field of remote sensing. Recently, deep learning technologies have yielded superior performance for object detection in remote sensing images. However, the detection results of the existing methods are horizontal bounding boxes that ignore vehicle orientations, thereby having limited applicability in scenes with dense vehicles or clutter backgrounds. In this article, we propose a one-stage, anchor-free detection approach to detect arbitrarily oriented vehicles in high-resolution aerial images. The vehicle detection task is transformed into a multitask learning problem by directly predicting high-level vehicle features via a fully convolutional network. That is, a classification subtask is created to look for vehicle central points and three regression subtasks are created to predict vehicle orientations, scales, and offsets of vehicle central points. First, coarse and fine feature maps outputted from different stages of a residual network are concatenated together by a feature pyramid fusion strategy. Upon the concatenated features, four convolutional layers are attached in parallel to predict high-level vehicle features. During training, task uncertainty learned from the training data is used to weight loss function in the multitask learning setting. For inferencing, oriented bounding boxes are generated using the predicted vehicle features, and oriented nonmaximum suppression (NMS) postprocessing is used to reduce redundant results. Experiments on two public aerial image data sets have shown the effectiveness of the proposed approach.
引用
收藏
页码:5221 / 5233
页数:13
相关论文
共 50 条
  • [31] Highly Efficient Anchor-Free Oriented Small Object Detection for Remote Sensing Images via Periodic Pseudo-Domain
    Wang, Minghui
    Li, Qingpeng
    Gu, Yunchao
    Pan, Junjun
    REMOTE SENSING, 2023, 15 (15)
  • [32] FII-CenterNet: An Anchor-Free Detector With Foreground Attention for Traffic Object Detection
    Fan, Siqi
    Zhu, Fenghua
    Chen, Shichao
    Zhang, Hui
    Tian, Bin
    Lv, Yisheng
    Wang, Fei-Yue
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (01) : 121 - 132
  • [33] Anchor-free multi-orientation text detection in natural scene images
    Lu, Liqiong
    Wu, Dong
    Wu, Tao
    Huang, Faliang
    Yi, Yaohua
    APPLIED INTELLIGENCE, 2020, 50 (11) : 3623 - 3637
  • [34] An Anchor-Free Dual-Branch Approach for Real-Time Metro Passenger Detection
    Liu, Quanli
    Wei, Mingqi
    Wang, Wei
    Zhang, Liyong
    Zhao, Xiaoguang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 1
  • [35] An improved anchor-free method for traffic scene object detection
    Ding, Tonghe
    Feng, Kaili
    Yan, Yejin
    Wei, Yanjun
    Li, Tianping
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (22) : 34703 - 34724
  • [36] An improved anchor-free method for traffic scene object detection
    Tonghe Ding
    Kaili Feng
    Yejin Yan
    Yanjun Wei
    Tianping Li
    Multimedia Tools and Applications, 2023, 82 : 34703 - 34724
  • [37] R2YOLOX: A Lightweight Refined Anchor-Free Rotated Detector for Object Detection in Aerial Images
    Liu, Fei
    Chen, Renwen
    Zhang, Junyi
    Xing, Kailing
    Liu, Hao
    Qin, Jinchang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [38] Coordinate-based anchor-free module for object detection
    Tang, Zhiyong
    Yang, Jianbing
    Pei, Zhongcai
    Song, Xiao
    APPLIED INTELLIGENCE, 2021, 51 (12) : 9066 - 9080
  • [39] ObjectBox: From Centers to Boxes for Anchor-Free Object Detection
    Zand, Mohsen
    Etemad, Ali
    Greenspan, Michael
    COMPUTER VISION, ECCV 2022, PT X, 2022, 13670 : 390 - 406
  • [40] Coordinate-based anchor-free module for object detection
    Zhiyong Tang
    Jianbing Yang
    Zhongcai Pei
    Xiao Song
    Applied Intelligence, 2021, 51 : 9066 - 9080