On the minimum vertex cover of generalized Petersen graphs

被引:2
作者
Jin, Dannielle D. D. [1 ]
Wang, David G. L. [1 ,2 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing 102488, Peoples R China
[2] Beijing Inst Technol, Beijing Key Lab MCAACI, Beijing 102488, Peoples R China
基金
中国国家自然科学基金;
关键词
Generalized Petersen graph; Independent set; Minimum vertex cover; I-GRAPHS; NUMBER; ENUMERATION;
D O I
10.1016/j.dam.2018.12.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is known that any vertex cover of the generalized Petersen graph P(n, k) has size at least n. Behsaz, Hatami and Mahmoodian characterized such graphs with minimum vertex cover numbers n and n + 1, and those with k <= 3. For k >= 4 and n >= 2k + 2, we prove that if the 2-adic valuation of n is less than or equal to that of k, then the minimum vertex cover number of P(n, k) equals n + 2 if and only if n is an element of {2k + 2, 3k - 1, 3k + 1}. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:309 / 318
页数:10
相关论文
共 24 条
[1]   THE CLASSIFICATION OF HAMILTONIAN GENERALIZED PETERSEN GRAPHS [J].
ALSPACH, B .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1983, 34 (03) :293-312
[2]  
[Anonymous], 1993, The Petersen Graph
[3]  
Behsaz B, 2008, AUSTRALAS J COMB, V40, P253
[4]   On the domination number of the generalized Petersen graphs [J].
Behzad, Arash ;
Behzad, Mehdi ;
Praeger, Cheryl E. .
DISCRETE MATHEMATICS, 2008, 308 (04) :603-610
[5]   I-graphs and the corresponding configurations [J].
Boben, M ;
Pisanski, T ;
Zitnik, A .
JOURNAL OF COMBINATORIAL DESIGNS, 2005, 13 (06) :406-424
[6]   EVERY GENERALIZED PETERSEN GRAPH HAS A TAIT COLORING [J].
CASTAGNA, F ;
PRINS, G .
PACIFIC JOURNAL OF MATHEMATICS, 1972, 40 (01) :53-&
[7]   SELF-DUAL CONFIGURATIONS AND REGULAR GRAPHS [J].
COXETER, HSM .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1950, 56 (05) :413-455
[8]   On the odd girth and the circular chromatic number of generalized Petersen graphs [J].
Daneshgar, Amir ;
Madani, Meysam .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 33 (03) :897-923
[9]   On the hardness of approximating minimum vertex cover [J].
Dinur, I ;
Safra, S .
ANNALS OF MATHEMATICS, 2005, 162 (01) :439-485
[10]  
Fox J, 2012, ARS COMBINATORIA, V103, P439