Te-based chalcogenide materials for selector applications

被引:135
作者
Velea, A. [1 ,3 ]
Opsomer, K. [1 ]
Devulder, W. [1 ]
Dumortier, J. [2 ]
Fan, J. [1 ]
Detavernier, C. [2 ]
Jurczak, M. [1 ]
Govoreanu, B. [1 ]
机构
[1] IMEC, Kapeldreef 75, B-3001 Heverlee, Belgium
[2] Univ Ghent, Dept Solid State Sci, Krijgslaan 281 S1, B-9000 Ghent, Belgium
[3] Natl Inst Mat Phys, Atomistilor 405A,POB MG 7, Magurele 077125, Ilfov, Romania
关键词
GLASS-TRANSITION TEMPERATURES; BIPOLAR RRAM SELECTOR; CRYSTALLIZATION BEHAVIOR; AMORPHOUS-CHALCOGENIDE; THRESHOLD; ALLOYS; SWITCHES; DEVICE; DIODE; FILMS;
D O I
10.1038/s41598-017-08251-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The implementation of dense, one-selector one-resistor (1S1R), resistive switching memory arrays, can be achieved with an appropriate selector for correct information storage and retrieval. Ovonic threshold switches (OTS) based on chalcogenide materials are a strong candidate, but their low thermal stability is one of the key factors that prevents rapid adoption by emerging resistive switching memory technologies. A previously developed map for phase change materials is expanded and improved for OTS materials. Selected materials from different areas of the map, belonging to binary Ge-Te and Si-Te systems, are explored. Several routes, including Si doping and reduction of Te amount, are used to increase the crystallization temperature. Selector devices, with areas as small as 55 x 55 nm(2), were electrically assessed. Sub-threshold conduction models, based on Poole-Frenkel conduction mechanism, are applied to fresh samples in order to extract as-processed material parameters, such as trap height and density of defects, tailoring of which could be an important element for designing a suitable OTS material. Finally, a glass transition temperature estimation model is applied to Te-based materials in order to predict materials that might have the required thermal stability. A lower average number of p-electrons is correlated with a good thermal stability.
引用
收藏
页数:12
相关论文
共 75 条
[1]   THRESHOLD SWITCHING IN CHALCOGENIDE-GLASS THIN-FILMS [J].
ADLER, D ;
SHUR, MS ;
SILVER, M ;
OVSHINSKY, SR .
JOURNAL OF APPLIED PHYSICS, 1980, 51 (06) :3289-3309
[2]   Effect of density of localized states on the ovonic threshold switching characteristics of the amorphous GeSe films [J].
Ahn, Hyung-Woo ;
Jeong, Doo Seok ;
Cheong, Byung-ki ;
Lee, Hosuk ;
Lee, Hosun ;
Kim, Su-dong ;
Shin, Sang-Yeol ;
Kim, Donghwan ;
Lee, Suyoun .
APPLIED PHYSICS LETTERS, 2013, 103 (04)
[3]   Nanosecond threshold switching of GeTe6 cells and their potential as selector devices [J].
Anbarasu, M. ;
Wimmer, Martin ;
Bruns, Gunnar ;
Salinga, Martin ;
Wuttig, Matthias .
APPLIED PHYSICS LETTERS, 2012, 100 (14)
[4]   AMORPHOUS VERSUS CRYSTALLINE GETE FILMS .2. OPTICAL PROPERTIES [J].
BAHL, SK ;
CHOPRA, KL .
JOURNAL OF APPLIED PHYSICS, 1969, 40 (12) :4940-&
[5]   'Memristive' switches enable 'stateful' logic operations via material implication [J].
Borghetti, Julien ;
Snider, Gregory S. ;
Kuekes, Philip J. ;
Yang, J. Joshua ;
Stewart, Duncan R. ;
Williams, R. Stanley .
NATURE, 2010, 464 (7290) :873-876
[6]   PRESWITCHING ELECTRICAL PROPERTIES, FORMING, AND SWITCHING IN AMORPHOUS CHALCOGENIDE ALLOY THRESHOLD AND MEMORY DEVICES [J].
BOSNELL, JR ;
THOMAS, CB .
SOLID-STATE ELECTRONICS, 1972, 15 (11) :1261-&
[7]   Access devices for 3D crosspoint memory [J].
Burr, Geoffrey W. ;
Shenoy, Rohit S. ;
Virwani, Kumar ;
Narayanan, Pritish ;
Padilla, Alvaro ;
Kurdi, Buelent ;
Hwang, Hyunsang .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2014, 32 (04)
[8]   Amorphous-Crystal Phase Transitions in GexTe1-x Alloys [J].
Carria, E. ;
Mio, A. M. ;
Gibilisco, S. ;
Miritello, M. ;
Bongiorno, C. ;
Grimaldi, M. G. ;
Rimini, E. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (02) :H130-H139
[9]   QUANTUM-DEFECT THEORY OF HEATS OF FORMATION AND STRUCTURAL TRANSITION ENERGIES OF LIQUID AND SOLID SIMPLE METAL-ALLOYS AND COMPOUNDS [J].
CHELIKOWSKY, JR ;
PHILLIPS, JC .
PHYSICAL REVIEW B, 1978, 17 (06) :2453-2477
[10]  
Chen J., 2012, INT S VLSI TECHN SYS, DOI [10.1109/VLSI-TSA.2012.6210123, DOI 10.1109/VLSI-TSA.2012.6210123]