Monotonicity of quantum relative entropy revisited

被引:137
作者
Petz, D [1 ]
机构
[1] Budapest Univ Technol & Econ, Dept Math Anal, H-1521 Budapest XI, Hungary
基金
匈牙利科学研究基金会;
关键词
quantum states; relative entropy; strong subadditivity; coarse-graining; Uhlmann's theorem; alpha-entropy;
D O I
10.1142/S0129055X03001576
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Monotonicity under coarse-graining is a crucial property of the quantum relative entropy. The aim of this paper is to investigate the condition of equality in the monotonicity theorem and in its consequences as the strong sub-additivity of von Neumann entropy, the Golden-Thompson trace inequality and the monotonicity of the Holevo quantitity. The relation to quantum Markov states is briefly indicated.
引用
收藏
页码:79 / 91
页数:13
相关论文
共 50 条
[21]   Relative entropy in CFT [J].
Longo, Roberto ;
Xu, Feng .
ADVANCES IN MATHEMATICS, 2018, 337 :139-170
[22]   Entropy for spherically symmetric, dynamical black holes from the relative entropy between coherent states of a scalar quantum field [J].
D'Angelo, Edoardo .
CLASSICAL AND QUANTUM GRAVITY, 2021, 38 (17)
[23]   Tight Bound on Relative Entropy by Entropy Difference [J].
Reeb, David ;
Wolf, Michael M. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (03) :1458-1473
[24]   Gibbs–Jaynes Entropy Versus Relative Entropy [J].
M. Meléndez ;
P. Español .
Journal of Statistical Physics, 2014, 155 :93-105
[25]   On Relative Entropy Maximum Entropy and design of questionnaires [J].
Chibat, Ahmed .
ICMS: INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCE, 2010, 1309 :206-212
[26]   Equality conditions for the quantum f-relative entropy and generalized data processing inequalities [J].
Sharma, Naresh .
2010 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2010, :2698-2702
[27]   Equality conditions for the quantum f-relative entropy and generalized data processing inequalities [J].
Sharma, Naresh .
QUANTUM INFORMATION PROCESSING, 2012, 11 (01) :137-160
[28]   Monotonicity of optimized quantum f-divergence [J].
Li, Haojian .
QUANTUM INFORMATION PROCESSING, 2024, 23 (05)
[29]   A Family of Monotone Quantum Relative Entropies [J].
Mathieu Lewin ;
Julien Sabin .
Letters in Mathematical Physics, 2014, 104 :691-705
[30]   Parametric Bayesian Estimation of Differential Entropy and Relative Entropy [J].
Gupta, Maya ;
Srivastava, Santosh .
ENTROPY, 2010, 12 (04) :818-843