Autonomous Vision-Based Aerial Grasping for Rotorcraft Unmanned Aerial Vehicles

被引:14
|
作者
Lin, Lishan [1 ]
Yang, Yuji [1 ]
Cheng, Hui [1 ]
Chen, Xuechen [1 ]
机构
[1] Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Guangdong, Peoples R China
关键词
autonomous aerial grasping; unmanned aerial vehicle; visual perception; localization; MANIPULATION;
D O I
10.3390/s19153410
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Autonomous vision-based aerial grasping is an essential and challenging task for aerial manipulation missions. In this paper, we propose a vision-based aerial grasping system for a Rotorcraft Unmanned Aerial Vehicle (UAV) to grasp a target object. The UAV system is equipped with a monocular camera, a 3-DOF robotic arm with a gripper and a Jetson TK1 computer. Efficient and reliable visual detectors and control laws are crucial for autonomous aerial grasping using limited onboard sensing and computational capabilities. To detect and track the target object in real time, an efficient proposal algorithm is presented to reliably estimate the region of interest (ROI), then a correlation filter-based classifier is developed to track the detected object. Moreover, a support vector regression (SVR)-based grasping position detector is proposed to improve the grasp success rate with high computational efficiency. Using the estimated grasping position and the UAV?Aos states, novel control laws of the UAV and the robotic arm are proposed to perform aerial grasping. Extensive simulations and outdoor flight experiments have been implemented. The experimental results illustrate that the proposed vision-based aerial grasping system can autonomously and reliably grasp the target object while working entirely onboard.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] PLineD: Vision-based Power Lines Detection for Unmanned Aerial Vehicles
    Santos, T.
    Moreira, M.
    Almeida, J.
    Dias, A.
    Martins, A.
    Dinis, J.
    Formiga, J.
    Silva, E.
    2017 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC), 2017, : 253 - 259
  • [32] Vision-based Autonomous Landing of Unmanned Aerial Vehicle on a Motional Unmanned Surface Vessel
    Xu, Zhe-Chong
    Hu, Bin-Bin
    Liu, Bin
    Wang, X. D.
    Zhang, Hai-Tao
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 6845 - 6850
  • [33] Towards Vision-Based Autonomous Landing for Small Unmanned Aerial Vehicles: Image Processing Hardware Development
    Schulz, H. -W.
    JOURNAL OF AEROSPACE COMPUTING INFORMATION AND COMMUNICATION, 2008, 5 (10): : 380 - 395
  • [34] Control Strategies and Novel Techniques for Autonomous Rotorcraft Unmanned Aerial Vehicles: A Review
    Abdelmaksoud, Sherif I.
    Mailah, Musa
    Abdallah, Ayman M.
    IEEE ACCESS, 2020, 8 : 195142 - 195169
  • [35] Vision-Based Modal Survey of Civil Infrastructure Using Unmanned Aerial Vehicles
    Hoskere, Vedhus
    Park, Jong-Woong
    Yoon, Hyungchul
    Spencer, Billie F., Jr.
    JOURNAL OF STRUCTURAL ENGINEERING, 2019, 145 (07)
  • [36] Vision-Based Autonomous Following of a Moving Platform and Landing for an Unmanned Aerial Vehicle
    Morales, Jesus
    Castelo, Isabel
    Serra, Rodrigo
    Lima, Pedro U.
    Basiri, Meysam
    SENSORS, 2023, 23 (02)
  • [37] Vision assisted autonomous path following for unmanned aerial vehicles
    Chitrakaran, Vilas K.
    Dawson, Darren M.
    Karman, Hariprasad
    Feemster, Matthew
    PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, : 63 - 68
  • [38] Monocular Vision-based Obstacle Avoidance Trajectory Planning for Unmanned Aerial Vehicles
    Zhang, Zhouyu
    Zhang, Youmin
    Cao, Yunfeng
    2020 INTERNATIONAL CONFERENCE ON UNMANNED AIRCRAFT SYSTEMS (ICUAS'20), 2020, : 627 - 632
  • [39] Vision-based Estimation of Ground Moving Target by Multiple Unmanned Aerial Vehicles
    Zhang, Mingfeng
    Liu, Hugh H. T.
    2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, : 1737 - 1742
  • [40] Robust Vision-based Pose Estimation for Relative Navigation of Unmanned Aerial Vehicles
    Park, Jang-Seong
    Lee, Dongjin
    Jeon, Byoungil
    Bang, Hyochoong
    2013 13TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2013), 2013, : 386 - 390