Global existence of solutions to the Proudman-Johnson equation

被引:15
作者
Chen, XF
Okamoto, H
机构
[1] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
[2] Kyoto Univ, Math Sci Res Inst, Kyoto 6068502, Japan
关键词
Proudman-Johnson equation; global existence;
D O I
10.3792/pjaa.76.149
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that there is no blow-up solutions, for positive viscosity constant nu, to the equation f(xxt) - nuf(xxxx) + ff(xxx) - f(x)f(xx) = 0, x is an element of (0. 1).t > 0 with (i) periodic boundary condition, or (ii) Dirichlet boundary condition f = f(x) = 0 or (iii) Neumann boundary condition f = f(xx) = 0 on the boundary x = 0, 1. Furthermore we show that every solution decays to the trivial steady state as t goes to infinity.
引用
收藏
页码:149 / 152
页数:4
相关论文
共 14 条
[1]   BLOW-UP OF UNSTEADY TWO-DIMENSIONAL EULER AND NAVIER-STOKES SOLUTIONS HAVING STAGNATION-POINT FORM [J].
CHILDRESS, S ;
IERLEY, GR ;
SPIEGEL, EA ;
YOUNG, WR .
JOURNAL OF FLUID MECHANICS, 1989, 203 :1-22
[2]  
CONSTANTIN P, 2000, SOME OPEN PROBLEMS R
[3]   2-DIMENSIONAL FLOW OF A VISCOUS-FLUID IN A CHANNEL WITH POROUS WALLS [J].
COX, SM .
JOURNAL OF FLUID MECHANICS, 1991, 227 :1-33
[4]   Global blow-up of separable solutions of the vorticity equation [J].
Grundy, RE ;
McLaughlin, R .
IMA JOURNAL OF APPLIED MATHEMATICS, 1997, 59 (03) :287-307
[5]  
Hiemenz K., 1911, DINGLERS POLYTECHNIS, V326, P321
[6]   A FAMILY OF 2-DIMENSIONAL NONLINEAR SOLUTIONS FOR MAGNETIC-FIELD ANNIHILATION [J].
JARDINE, M ;
ALLEN, HR ;
GRUNDY, RE ;
PRIEST, ER .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1992, 97 (A4) :4199-4207
[7]  
MCLEOD JB, 1991, NATO ASI SERIES, V284
[8]   Some similarity solutions of the Navier-Stokes equations and related topics [J].
Okamoto, H ;
Zhu, JH .
TAIWANESE JOURNAL OF MATHEMATICS, 2000, 4 (01) :65-103
[9]  
OKAMOTO H, 1998, GAKUTO INT SERIES MA, V11, P171
[10]  
OKAMOTO H, 1998, P 3 CHIN JAP SEM NUM, P253