The Wall-associated Kinase gene family in rice genomes

被引:60
作者
Valter de Oliveira, Luiz Felipe [1 ,2 ,3 ]
Christoff, Ana Paula [1 ,2 ,3 ]
de Lima, Julio Cesar [1 ,2 ,3 ]
Feijo de Ross, Bruno Comparsi [2 ,3 ]
Sachetto-Martins, Gilberto [4 ]
Margis-Pinheiro, Marcia [1 ]
Margis, Rogerio [1 ,2 ,3 ,5 ]
机构
[1] Univ Fed Rio Grande do Sul, Programa Posgrad Genet & Biol Mol, BR-91501970 Porto Alegre, RS, Brazil
[2] Univ Fed Rio Grande do Sul, Ctr Biotecnol, BR-91501970 Porto Alegre, RS, Brazil
[3] Univ Fed Rio Grande do Sul, Programa Posgrad Biol Celular & Mol, BR-91501970 Porto Alegre, RS, Brazil
[4] Univ Fed Rio de Janeiro, Dept Genet, BR-21941 Rio De Janeiro, Brazil
[5] Univ Fed Rio Grande do Sul, Dept Biofis, BR-91501970 Porto Alegre, RS, Brazil
关键词
WAK; Wall-associated Kinase; RLK; Rice; Oryza sativa; RECEPTOR-LIKE KINASES; PROTEIN-KINASE; STRUCTURAL BASIS; ARABIDOPSIS; EXPRESSION; JAPONICA; INDICA; SUBFUNCTIONALIZATION; SUPERFAMILY; EVOLUTION;
D O I
10.1016/j.plantsci.2014.09.007
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The environment is a dynamic system in which life forms adapt. Wall-Associated Kinases (WAK) are a subfamily of receptor-like kinases associated with the cell wall. These genes have been suggested as sensors of the extracellular environment and triggers of intracellular signals. They belong to the ePK superfamily with or without a conserved arginine before the catalytic subdomain VIB, which characterizes RD and non-RD WAKs. WAK is a large subfamily in rice. We performed an extensive comparison of WAK genes from A. thaliana (AtWAK), O. sativa japonica and indica subspecies (OsWAK). Phylogenetic studies and WAK domain characterization allowed for the identification of two distinct groups of WAK genes in Arabidopsis and rice. One group corresponds to a cluster containing only OsWAKs that most likely expanded after the monocot-dicot separation, which evolved into a non-RD kinase class. The other group comprises classical RD-kinases with both AtWAK and OsWAK representatives. Clusterization analysis using extracellular and kinase domains demonstrated putative functional redundancy for some genes, but also highlighted genes that could recognize similar extracellular stimuli and activate different cascades. The gene expression pattern of WAKs in response to cold suggests differences in the regulation of the OsWAK genes in the indica and japonica subspecies. Our results also confirm the hypothesis of functional diversification between A. thaliana and O. sativa WAK genes. Furthermore, we propose that plant WAKs constitute two evolutionarily related but independent subfamilies: WAK-RD and WAK-nonRD. Recognition of this structural division will further provide insights to understanding WAK functions and regulations. (C) 2014 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:181 / 192
页数:12
相关论文
共 60 条
[31]   The structural basis for substrate recognition and control by protein kinases [J].
Johnson, LN ;
Lowe, ED ;
Noble, MEM ;
Owen, DJ .
FEBS LETTERS, 1998, 430 (1-2) :1-11
[32]   Subfunctionalization of duplicated zebrafish pax6 genes by cis-regulatory divergence [J].
Kleinjan, Dirk A. ;
Bancewicz, Ruth M. ;
Gautier, Philippe ;
Dahm, Ralf ;
Schonthaler, Helia B. ;
Damante, Giuseppe ;
Seawright, Anne ;
Hever, Ann M. ;
Yeyati, Patricia L. ;
van Heyningen, Veronica ;
Coutinho, Pedro .
PLOS GENETICS, 2008, 4 (02)
[33]   WAKs; cell wall associated kinases - Commentary [J].
Kohorn, BD .
CURRENT OPINION IN CELL BIOLOGY, 2001, 13 (05) :529-533
[34]   Structural modes of stabilization of permissive phosphorylation sites in protein kinases: Distinct strategies in Ser/Thr and Tyr kinases [J].
Krupa, A ;
Preethl, G ;
Srinivasan, N .
JOURNAL OF MOLECULAR BIOLOGY, 2004, 339 (05) :1025-1039
[35]   Circos: An information aesthetic for comparative genomics [J].
Krzywinski, Martin ;
Schein, Jacqueline ;
Birol, Inanc ;
Connors, Joseph ;
Gascoyne, Randy ;
Horsman, Doug ;
Jones, Steven J. ;
Marra, Marco A. .
GENOME RESEARCH, 2009, 19 (09) :1639-1645
[36]   Evolutionary History and Stress Regulation of Plant Receptor-Like Kinase/Pelle Genes [J].
Lehti-Shiu, Melissa D. ;
Zou, Cheng ;
Hanada, Kousuke ;
Shiu, Shin-Han .
PLANT PHYSIOLOGY, 2009, 150 (01) :12-26
[37]   SMART 6: recent updates and new developments [J].
Letunic, Ivica ;
Doerks, Tobias ;
Bork, Peer .
NUCLEIC ACIDS RESEARCH, 2009, 37 :D229-D232
[38]   Gene Expression Profiles Deciphering Rice Phenotypic Variation between Nipponbare (Japonica) and 93-11 (Indica) during Oxidative Stress [J].
Liu, Fengxia ;
Xu, Wenying ;
Wei, Qiang ;
Zhang, Zhenghai ;
Xing, Zhuo ;
Tan, Lubin ;
Di, Chao ;
Yao, Dongxia ;
Wang, Chunchao ;
Tan, Yuanjun ;
Yan, Hong ;
Ling, Yi ;
Sun, Chuanqing ;
Xue, Yongbiao ;
Su, Zhen .
PLOS ONE, 2010, 5 (01)
[39]   Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method [J].
Livak, KJ ;
Schmittgen, TD .
METHODS, 2001, 25 (04) :402-408
[40]   Receptor-like protein kinase 2 (RPK 2) is a novel factor controlling anther development in Arabidopsis thaliana [J].
Mizuno, Shinji ;
Osakabe, Yuriko ;
Maruyama, Kyonoshin ;
Ito, Takuya ;
Osakabe, Keishi ;
Sato, Takahide ;
Shinozaki, Kazuo ;
Yamaguchi-Shinozaki, Kazuko .
PLANT JOURNAL, 2007, 50 (05) :751-766