Comparative assessment of erbium fiber ring lasers and reflective SOA linear lasers for fiber Bragg grating dynamic strain sensing

被引:27
作者
Wei, Heming [1 ,2 ]
Krishnaswamy, Sridhar [1 ,2 ]
机构
[1] Northwestern Univ, Ctr Smart Struct & Mat, Evanston, IL 60208 USA
[2] Northwestern Univ, Mech Engn, Evanston, IL 60208 USA
关键词
SEMICONDUCTOR OPTICAL AMPLIFIER; TECHNOLOGY; ABSORPTION; SIGNALS; SENSOR; SYSTEM;
D O I
10.1364/AO.56.003867
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Fiber Bragg grating (FBG) dynamic strain sensors using both an erbium-based fiber ring laser configuration and a reflective semiconductor optical amplifier (RSOA)-based linear laser configuration are investigated theoretically and experimentally. Fiber laser models are first presented to analyze the output characteristics of both fiber laser configurations when the FBG sensor is subjected to dynamic strains at high frequencies. Due to differences in the transition times of erbium and the semiconductor (InP/InGaAsP), erbium-doped fiber amplifier (EDFA)- and RSOA-based fiber lasers exhibit different responses and regimes of stability when the FBG is subjected to dynamic strains. The responses of both systems are experimentally verified using an adaptive photorefractive two-wave mixing (TWM) spectral demodulation technique. The experimental results show that the RSOA-FBG fiber linear cavity laser is stable and can stably respond to dynamic strains at high frequencies. An example application using a multiplexed TWM interferometer to demodulate multiple FBG sensors is also discussed. (C) 2017 Optical Society of America
引用
收藏
页码:3867 / 3874
页数:8
相关论文
共 18 条
[1]  
Balogun O., 2009, P SOC PHOTO-OPT INS, V7295
[2]   APPLICATION OF A FIBER FOURIER-TRANSFORM SPECTROMETER TO THE DETECTION OF WAVELENGTH-ENCODED SIGNALS FROM BRAGG GRATING SENSORS [J].
DAVIS, MA ;
KERSEY, AD .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 1995, 13 (07) :1289-1295
[3]   On the amplified spontaneous emission noise modeling of semiconductor optical amplifiers [J].
de Melo, Alessandro Marques ;
Petermann, Klaus .
OPTICS COMMUNICATIONS, 2008, 281 (18) :4598-4605
[4]   Detection of ultrasonic motion of a scattering surface by photorefractive InP:Fe under an applied dc field [J].
Delaye, P ;
Blouin, A ;
Drolet, D ;
deMontmorillon, LA ;
Roosen, G ;
Monchalin, JP .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1997, 14 (07) :1723-1734
[5]   Response of a fiber Bragg grating ultrasonic sensor [J].
Fomitchov, P ;
Krishnaswamy, S .
OPTICAL ENGINEERING, 2003, 42 (04) :956-963
[6]   Reflective-SOA Fiber Cavity Laser as Directly Modulated WDM-PON Colorless Transmitter [J].
Gebrewold, Simon A. ;
Marazzi, Lucia ;
Parolari, Paola ;
Brenot, Romain ;
Duill, Sean P. O. ;
Bonjour, Romain ;
Hillerkuss, David ;
Hafner, Christian ;
Leuthold, Juerg .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2014, 20 (05)
[7]   Fiber Bragg grating technology fundamentals and overview [J].
Hill, KO ;
Meltz, G .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 1997, 15 (08) :1263-1276
[8]  
Ibrahim R., 2007, QUAN EL LAS SCI C QE
[9]   Multiplexed strain sensor using fiber grating-tuned fiber laser with a semiconductor optical amplifier [J].
Kim, S ;
Kwon, J ;
Kim, S ;
Lee, B .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2001, 13 (04) :350-351
[10]   Fiber Ring Laser Infra-cavity Absorption Spectroscopy for Gas Sensing: Analysis and Experiment [J].
Li, Mo ;
Liu, Kun ;
Jing, Wencai ;
Peng, Gang-Ding .
JOURNAL OF THE OPTICAL SOCIETY OF KOREA, 2010, 14 (01) :14-21