Monotonicity theorems and inequalities for the complete elliptic integrals\

被引:189
作者
Alzer, H [1 ]
Qiu, SL [1 ]
机构
[1] Hangzhou Inst Elect Engn, Presidents Off, Hangzhou 310037, Zhejiang, Peoples R China
基金
芬兰科学院;
关键词
complete elliptic integrals; monotonicity; inequalities; mean values; Arc length of an ellipse;
D O I
10.1016/j.cam.2004.02.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove monotonicity properties of certain combinations of complete elliptic integrals of the first and second kind, K and E. These results lead to sharp symmetrical bounds for K and E, which improve recently discovered inequalities. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:289 / 312
页数:24
相关论文
共 44 条
[31]   THE LOGARITHMIC MEAN IN N-VARIABLES [J].
PITTENGER, AO .
AMERICAN MATHEMATICAL MONTHLY, 1985, 92 (02) :99-104
[32]   Asymptotic expansions and inequalities for hypergeometric functions [J].
Ponnusamy, S ;
Vuorinen, M .
MATHEMATIKA, 1997, 44 (88) :278-301
[33]  
Qiu S. L., 1992, ACTA MATH SINICA, V35, P492
[34]  
QiU S.-L., 1996, COMPLEX VARIABLES TH, V30, P77
[35]   Some inequalities for the growth of elliptic integrals [J].
Qiu, SL ;
Vamanamurthy, MK ;
Vuorinen, M .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1998, 29 (05) :1224-1237
[36]   Sharp estimates for complete elliptic integrals [J].
Qiu, SL ;
Vamanamurthy, MK .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (03) :823-834
[37]  
Qiu SL., 1995, PANAMER MATH J, V5, P41
[38]  
QIU SL, 1997, J HANGZHOU I ELECT E, V3, P1
[39]   ON CERTAIN INEQUALITIES FOR MEANS [J].
SANDOR, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 189 (02) :602-606
[40]   On certain inequalities for means .2. [J].
Sandor, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 199 (02) :629-635