Monotonicity theorems and inequalities for the complete elliptic integrals\

被引:189
作者
Alzer, H [1 ]
Qiu, SL [1 ]
机构
[1] Hangzhou Inst Elect Engn, Presidents Off, Hangzhou 310037, Zhejiang, Peoples R China
基金
芬兰科学院;
关键词
complete elliptic integrals; monotonicity; inequalities; mean values; Arc length of an ellipse;
D O I
10.1016/j.cam.2004.02.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove monotonicity properties of certain combinations of complete elliptic integrals of the first and second kind, K and E. These results lead to sharp symmetrical bounds for K and E, which improve recently discovered inequalities. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:289 / 312
页数:24
相关论文
共 44 条
[1]  
Abramowitz M., 1965, HDB MATH FUNCTIONS F, DOI DOI 10.1119/1.15378
[2]   GAUSS, LANDEN, RAMANUJAN, THE ARITHMETIC-GEOMETRIC MEAN, ELLIPSES, PI, AND THE LADIES-DIARY [J].
ALMKVIST, G ;
BERNDT, B .
AMERICAN MATHEMATICAL MONTHLY, 1988, 95 (07) :585-608
[3]   Sharp inequalities for the complete elliptic integral of the first kind [J].
Alzer, H .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1998, 124 :309-314
[4]  
Anderson G.D., 1989, EXPO MATH, V7, P97
[5]  
Anderson G.D., 1997, CONFORMAL INVARINANT
[6]   DIMENSION-FREE QUASI-CONFORMAL DISTORTION IN N-SPACE [J].
ANDERSON, GD ;
VAMANAMURTHY, MK ;
VUORINEN, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 297 (02) :687-706
[7]  
ANDERSON GD, 1988, LECT NOTES MATH, V1351, P1
[8]  
ANDERSON GD, 1993, PAC J MATH, V160, P1
[9]   AN INEQUALITY FOR COMPLETE ELLIPTIC INTEGRALS [J].
ANDERSON, GD ;
DUREN, P ;
VAMANAMURTHY, MK .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 182 (01) :257-259
[10]   Elliptic integral inequalities, with applications [J].
Anderson, GD ;
Qiu, SL ;
Vamanamurthy, MK .
CONSTRUCTIVE APPROXIMATION, 1998, 14 (02) :195-207