Lp estimates for the (partial derivative)over-bar-equation on a class of infinite type domains

被引:15
作者
Ly Kim Ha [1 ]
Tran Vu Khanh [2 ,3 ]
Raich, Andrew [4 ]
机构
[1] Vietnam Natl Univ, Univ Sci, Dept Math & Comp Sci, Ho Chi Minh City, Vietnam
[2] Tan Tao Univ, Tan Duc E City, Long An Provinc, Vietnam
[3] Natl Univ Singapore, Dept Math, Singapore 119076, Singapore
[4] Univ Arkansas, Dept Math Sci, Fayetteville, AR 72701 USA
关键词
partial derivative; Henkin solution; Henkin operator; L-p estimates for partial derivative; infinite type domains; CONVEX DOMAINS; PSEUDOCONVEX DOMAINS; HOLDER; EQUATION; HYPOELLIPTICITY; SUPNORM;
D O I
10.1142/S0129167X14501067
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove L-p estimates, 1 <= p <= 8, for solutions to the Cauchy- Riemann equations (partial derivative) over baru = phi on a class of infinite type domains in C-2. The domains under consideration are a class of convex ellipsoids, and we show that if phi is a (partial derivative) over bar -closed ( 0, 1)-form with coefficients in Lp and u is the Henkin kernel solution to (partial derivative) over baru = phi, then parallel to u parallel to(p) <= C parallel to phi parallel to(p) where the constant C is independent of phi In particular, we prove L-1 estimates and obtain L-p estimates by interpolation.
引用
收藏
页数:15
相关论文
共 18 条
[1]  
[Anonymous], 1999, Modern techniques and their applications
[2]   Propagation of holomorphic extendibility and non-hypoellipticity of the (partial derivative)over-bar-Neumann problem in an exponentially degenerate boundary [J].
Baracco, Luca ;
Tran Vu Khanh ;
Zampieri, Giuseppe .
ADVANCES IN MATHEMATICS, 2012, 230 (4-6) :1972-1978
[3]   HOLDER AND LP-ESTIMATES FOR THE DELTA-EQUATION IN SOME CONVEX DOMAINS WITH REAL-ANALYTIC BOUNDARY [J].
BRUNA, J ;
DELCASTILLO, J .
MATHEMATISCHE ANNALEN, 1984, 269 (04) :527-539
[4]   ESTIMATES FOR THE (PARTIAL-DERIVATIVE)OVER-BAR-NEUMANN PROBLEM IN PSEUDOCONVEX DOMAINS OF FINITE-TYPE IN C-2 [J].
CHANG, DC ;
NAGEL, A ;
STEIN, EM .
ACTA MATHEMATICA, 1992, 169 (3-4) :153-228
[5]  
Chen S.-C., 2001, Studies in Advanced Mathematics, V19
[6]  
CHEN ZH, 1993, MANUSCRIPTA MATH, V80, P131
[7]   HYPOELLIPTICITY OF THE KOHN LAPLACIAN FOR THREE-DIMENSIONAL TUBULAR CAUCHY-RIEMANN STRUCTURES [J].
Christ, Michael .
JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2002, 1 (02) :279-291
[8]   SHARP HOLDER ESTIMATES FOR PARTIAL-DIFFERENTIAL-EQUATION ON ELLIPSOIDS [J].
DIEDERICH, K ;
FORNAESS, JE ;
WIEGERINCK, J .
MANUSCRIPTA MATHEMATICA, 1986, 56 (04) :399-417
[9]  
Fornæss JE, 2011, J GEOM ANAL, V21, P495, DOI 10.1007/s12220-010-9155-y
[10]  
Henkin G. M., 1970, Math. USSR Sb, V11, P273