ON STEADY STATE OF SOME LOTKA-VOLTERRA COMPETITION-DIFFUSION-ADVECTION MODEL

被引:2
作者
Wang, Qi [1 ]
机构
[1] Univ Shanghai Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2020年 / 25卷 / 03期
关键词
Lotka-Volterra; competition-diffusion-advection model; shadow system; coexistence state; SPATIAL HETEROGENEITY; DISPERSAL RATES; PERMANENCE; EVOLUTION; COEXISTENCE; DEGENERACY; MIGRATION;
D O I
10.3934/dcdsb.2019193
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a shadow system of a two species Lotka-Volterra competition-diffusion-advection system, where the ratio of diffusion and advection rates are supposed to be a positive constant. We show that for any given migration, if the product of interspecific competition coefficients of competitors is small, then the shadow system has coexistence state; otherwise we can always find some migration such that it has no coexistence state. Moreover, these findings can be applied to steady state of the two-species Lotka-Volterra competition-diffusion-advection model. Particularly, we show that if the interspecific competition coefficient of the invader is sufficiently small, then rapid diffusion of the invader can drive to coexistence state.
引用
收藏
页码:859 / 875
页数:17
相关论文
共 50 条
  • [41] Dynamics of a periodic-parabolic Lotka-Volterra competition-diffusion system in heterogeneous environments
    Bai, Xueli
    He, Xiaoqing
    Ni, Wei-Ming
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2023, 25 (11) : 4583 - 4637
  • [42] Global dynamics of the diffusive Lotka-Volterra competition model with stage structure
    Chen, Shanshan
    Shi, Junping
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2020, 59 (01)
  • [43] The Numerical Analysis of the Long Time Asymptotic Behavior for Lotka-Volterra Competition Model with Diffusion
    Wang, Jue
    Liu, QinPan
    Luo, YueSheng
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2019, 40 (06) : 685 - 705
  • [44] DYNAMICS OF A LOTKA-VOLTERRA COMPETITION-DIFFUSION MODEL WITH STAGE STRUCTURE AND SPATIAL HETEROGENEITY
    Yan, Shuling
    Guo, Shangjiang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (04): : 1559 - 1579
  • [45] The diffusive Lotka-Volterra competition model in fragmented patches I: Coexistence
    Acharya, A.
    Bandyopadhyay, S.
    Cronin, J. T.
    Goddard II, J.
    Muthunayake, A.
    Shivaji, R.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2023, 70
  • [46] Global Dynamics of the Lotka-Volterra Competition-Diffusion System: Diffusion and Spatial Heterogeneity I
    He, Xiaoqing
    Ni, Wei-Ming
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2016, 69 (05) : 981 - 1014
  • [47] A Lotka-Volterra symbiotic model with cross-diffusion
    Delgado, M.
    Montenegro, M.
    Suarez, A.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (05) : 2131 - 2149
  • [48] The linear and nonlinear diffusion of the competitive Lotka-Volterra model
    Zhang, Xin-an
    Chen, Lansun
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (12) : 2767 - 2776
  • [49] Coexistence in a competition-diffusion-advection system with equal amount of total resources
    Wei, Jinyu
    Liu, Bin
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2021, 18 (04) : 3543 - 3558
  • [50] Direction of Hopf bifurcation in a delayed Lotka-Volterra competition diffusion system
    Yan, Xiang-Ping
    Zhang, Cun-Hua
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (05) : 2758 - 2773