Splice-Junction-Based Mapping of Alternative Isoforms in the Human Proteome

被引:47
作者
Han, Edward Lau Yu [1 ]
Han, Yu [3 ,4 ]
Williams, Damon R. [1 ]
Thomas, Cody T. [4 ]
Shrestha, Rajani [1 ]
Wu, Joseph C. [1 ,2 ]
Lam, Maggie P. Y. [3 ,4 ,5 ]
机构
[1] Stanford Univ, Dept Med, Stanford Cardiovasc Inst, Palo Alto, CA 94304 USA
[2] Stanford Univ, Sch Med, Dept Radiol, Palo Alto, CA 94304 USA
[3] Univ Colorado, Consortium Fibrosis Res & Translat, Anschutz Med Campus, Aurora, CO 80045 USA
[4] Univ Colorado, Dept Med Cardiol, Anschutz Med Campus, Aurora, CO 80045 USA
[5] Univ Colorado, Dept Biochem & Mol Genet, Anschutz Med Campus, Aurora, CO 80045 USA
来源
CELL REPORTS | 2019年 / 29卷 / 11期
关键词
PROTEOGENOMICS; LANDSCAPE; DISCOVERY; IDENTIFICATION; TRANSCRIPTOME; EXPRESSION; PEPTIDES; PROTEINS; ACCURACY; ENABLES;
D O I
10.1016/j.celrep.2019.11.026
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The protein-level translational status and function of many alternative splicing events remain poorly understood. We use an RNA sequencing (RNA-seq)-guided proteomics method to identify protein alternative splicing isoforms in the human proteome by constructing tissue-specific protein databases that prioritize transcript splice junction pairs with high translational potential. Using the custom databases to reanalyze similar to 80 million mass spectra in public proteomics datasets, we identify more than 1,500 noncanonical protein isoforms across 12 human tissues, including similar to 400 sequences undocumented on TrEMBL and RefSeq databases. We apply the method to original quantitative mass spectrometry experiments and observe widespread isoform regulation during human induced pluripotent stem cell cardiomyocyte differentiation. On a proteome scale, alternative isoform regions overlap frequently with disordered sequences and post-translational modification sites, suggesting that alternative splicing may regulate protein function through modulating intrinsically disordered regions. The described approach may help elucidate functional consequences of alternative splicing and expand the scope of proteomics investigations in various systems.
引用
收藏
页码:3751 / +
页数:20
相关论文
共 88 条
  • [1] Adusumilli R, 2017, METHODS MOL BIOL, V1550, P339, DOI 10.1007/978-1-4939-6747-6_23
  • [2] Aebersold R, 2018, NAT CHEM BIOL, V14, P206, DOI [10.1038/NCHEMBIO.2576, 10.1038/nchembio.2576]
  • [3] Alfaro JA, 2014, NAT METHODS, V11, P1107, DOI [10.1038/NMETH.3138, 10.1038/nmeth.3138]
  • [4] The fractured landscape of RNA-seq alignment: the default in our STARs
    Ballouz, Sara
    Dobin, Alexander
    Gingeras, Thomas R.
    Gillis, Jesse
    [J]. NUCLEIC ACIDS RESEARCH, 2018, 46 (10) : 5125 - 5138
  • [5] The Evolutionary Landscape of Alternative Splicing in Vertebrate Species
    Barbosa-Morais, Nuno L.
    Irimia, Manuel
    Pan, Qun
    Xiong, Hui Y.
    Gueroussov, Serge
    Lee, Leo J.
    Slobodeniuc, Valentina
    Kutter, Claudia
    Watt, Stephen
    Colak, Recep
    Kim, TaeHyung
    Misquitta-Ali, Christine M.
    Wilson, Michael D.
    Kim, Philip M.
    Odom, Duncan T.
    Frey, Brendan J.
    Blencowe, Benjamin J.
    [J]. SCIENCE, 2012, 338 (6114) : 1587 - 1593
  • [6] Dimensionality reduction for visualizing single-cell data using UMAP
    Becht, Etienne
    McInnes, Leland
    Healy, John
    Dutertre, Charles-Antoine
    Kwok, Immanuel W. H.
    Ng, Lai Guan
    Ginhoux, Florent
    Newell, Evan W.
    [J]. NATURE BIOTECHNOLOGY, 2019, 37 (01) : 38 - +
  • [7] Human cytomegalovirus infection of tumor cells downregulates NCAM (CD56): A novel mechanism for virus-induced tumor invasiveness
    Blaheta, RA
    Beecken, WD
    Engl, T
    Jonas, D
    Oppermann, E
    Hundemer, M
    Doerr, HW
    Scholz, M
    Cinatl, J
    [J]. NEOPLASIA, 2004, 6 (04): : 323 - 331
  • [8] The Relationship between Alternative Splicing and Proteomic Complexity
    Blencowe, Benjamin J.
    [J]. TRENDS IN BIOCHEMICAL SCIENCES, 2017, 42 (06) : 407 - 408
  • [9] BLAST: a more efficient report with usability improvements
    Boratyn, Grzegorz M.
    Camacho, Christiam
    Cooper, Peter S.
    Coulouris, George
    Fong, Amelia
    Ma, Ning
    Madden, Thomas L.
    Matten, Wayne T.
    McGinnis, Scott D.
    Merezhuk, Yuri
    Raytselis, Yan
    Sayers, Eric W.
    Tao, Tao
    Ye, Jian
    Zaretskaya, Irena
    [J]. NUCLEIC ACIDS RESEARCH, 2013, 41 (W1) : W29 - W33
  • [10] Subunit NDUFV3 is present in two distinct isoforms in mammalian complex I
    Bridges, Hannah R.
    Mohammed, Khairunnisa
    Harbour, Michael E.
    Hirst, Judy
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2017, 1858 (03): : 197 - 207